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Preface

The present document reports all the work that | have done so far at Centro de
Electronica Industrial (Universidad Politécnica de Madrid) in order to complete the
Master of Research (MRes) degregrogram.

The chosen research field for this thesis is atrtificial intelligence, which has beena very
hot topic in our society for a long time . Lots of sciencefiction novels portrait intelligent
machines, which are capable of showing intelligent behavior. Real-world systems are
still far from those levels of intelligence and reasoning capabil ities. However, more
and more complex ideas appear as technology evolves(e.g. autonomous vehicles,
robot assistants, etc).

Artificial intelligence constitutes itself a huge research field, with a large number of

different branches (actually, new branches keep appearing almost every year). In this
thesis, | have focused my efforts on two of these branches: particle filtering and
evolutionary computation. This document presents a general overview of these two

important topics, introducing the basic theory concepts needed to understand the
proposed architecture and the latter results, which are also included in the final

chapters.

Alfonso Rodriguez
Madrid, Spain
March 2014
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Introduction

I.  Motivation

Autonomous systems require, in most of the cases, reasoning am decision-making

capabilities. Moreover, the decision process has to occur in real time. Realtime

computing means that every situation or event has to have an answer before a
temporal deadline. In complex applications, these deadlines are usually in the order

of milliseconds or even microseconds if the application is very demanding. In order to

comply with these timing requirements, computing tasks have to be performed as fast
as possble. The problem arises when computations are no longer simple, but very

time-consuming operations.

A good example can be found in autonomous navigation systems with visual -tracking
submodules where Kalman filtering is the most extended solution. However, in recent
years, some interesting new approaches have been developedParticle filtering, given
its more general problem-solving features, has reached an important position in the
field.

. Aim

The aim of this thesis is to design, implement and validate a hardware platform that
constitutes itself an embedded intelligent system. The proposed system would
combine particle filtering and evolutionary computation algorithms to generate

intelligent behavior.

Traditional approaches to particle filtering or evolutionary computation have been
developed in software platforms, including parallel capabilities to some extent. In this
work, an additional goal is fully exploit ing hardware impleme ntation advantages. By
using the computational resources available in a FPGA device, better performance
results in terms of computation time are expected. These hardware resources will be
in charge of extensive repetitive computations. With this hardware -based
implementation, real -time features are also expected.

l1l. PreviousWork

Embedded intelligence has already been studied at CEl (Centro de Electrénica
Industrial). In [1], two different approaches are evaluated: on the one hand, a particle
filter for vehicle trajectory prediction; on the other hand, an artificial -neural-network -
based cognitive architecture. In addition, the author gives reasons to embed
intelligence on chip, and presents some interesting examples. Another example of

Hardware Based Particle Filter with Evolutionary Resampling Stage



8 Introduction

artificial intelligence application s can be found in [2], where the author proposes a
novel distributed artificial network for image compression in wireless visual sensor
networks (WVSNSs).

A lot of research has also been conductedat CEI on the field of evolutionary
computation. For instance, in [3] and all its related works and publications, an
evolutionary algorithm is used in order to generate a self-adaptive evolvable
hardware platform, suitable for image processing tasks.

V. References

[1] Sal vador , Rub®n, 0Si st e mMasterEhedisBdpti2008s | nt el i gen

[2] Al edo, Danpresin de dnagenes optimizada en consumo energético
para redes inaldmbricas, ®aster ThesisFeb. 2013

[38] Mor a, J a v i-Agmostic RelRAdapsive Evolvable Hardware for Real
Ti me Video Filt e MastegThesigSppt 20t3at i ons, 0O
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Particle Filtering

. Introduction

Realworld systems represent a great challenge when trying to analyze them. State
estimation and prediction have been considered major concerns in the field. Hence, a
lot of research has been conducted regarding these topics. One ofthe most significant
examples is the sacalled Kalman filter. First introduced in 1960 [1], it has been deeply
studied and cited in the literature [2].

The Kalman filter is used to estimate the estate of a discrete process in which some
measurements are taken. The model can be expressed using the following equations:

w 0 0> 0
a Ow U
The first equation corresponds to the dynamic evolution of the process (it is also called
process model), whereas the second represents the measurement model, i.e. which
state variables can be observed (notice thanot all state variables might be observable).

The variables 0 and 0 represent the process noise and the measurement noise
respectively, and each follows a normal distribution with the following parameters:

6 x 0 b

0x 0 iy
Kalman filt ers have two main stages: the prediction stage, in which the process model
equation is used in order to predict the next state; and the update stage, in which the

measurement model is used to correct that prediction. The correction algorithm
adjusts each pediction using the actual measurement and least squares optimization.

Correction Stage

|:> 1) Compute Kalman gain

Prediction Stage

O 0 J0OD20dD JO Y
2) Update estimation

2) Predict error covariance ® ® LU J&a Ow
0 6D B 0 2) Update error covariance

0 OO0 J0OD

Fig. 1.1. Kalman filter algorithm

1) Predict state
® 0w 6
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10 Particle Filtering

In Fig. 1.1, the common algorithmic implementation of the discrete Kalman filter is
shown. Once the filter has been initialized, the algorithm iterates over each time step
performing the two aforementi oned stages.

The research field on which the Kalman filter has had larger impact is autonomous or
assisted navigation. However, thesefilters have some important limitations , since they
are linear Gaussianbased estimators Real systems aresometimesnon-linear and their
noise does not necessarily have to beGaussian, thus having to work with approximate
models (e.g. linearized systems) which can lead to inaccurate results. In order to
overcome these limitations, more complex approaches have been developed.Some of
these new strategies will be discussedin following sections.

[I. Particle Filters

In this section, the basic theory regarding particle filtering will be exposed. Particle
filters are based upon complex mathematical concepts. Therefore, only a few hints will
be provided regarding each constituting element, i.e. the basic knowledge needed in
order to understand how a patrticle filter works.

1.1 Hidden Markov Models

Linear approximations of complex non -lineal systems tend to be inaccurate when the
operating conditions suffer large variations, i.e. when we operate far from the
linearization point . Therefore, these models are no longer useful for complex
applications. In this section, a general overview of hidden Markov models (HMM) will
be provided.

A Markov m odel is a stochastic model (i.e. systems which show random behavior) in
which the Markov property is satisfied. The Markov property is usually used to refer

to the memoryless property of a stochastic process, i.e. future states of the process
depend only u pon the present state, and not on the previous history of the system.

A hidden Markov model is a statistical Markov model in which the system is not fully
observable (i.e. not all the states are visible to the observer) The basic idea is that the
statesgyuence i s unknowlince each sate has la digtrithugion dunction
over each of the possible output values, this state sequencecan be determined using
the output values (i.e. the observable variables).

Fig. 11.1. Hidden Markov model example

Hardware Based Particle Filter wittEvolutionary Resampling Stage



Particle Filtering 11

A simple example of a hidden Markov model has been provided in Fig. 1l.1. The
stochastic system has three statesxi, Xz, X3s) but only two possible output values or
measurements /1, y2). Transitions between each state have been represented as blue
arrows, and output transitions as green arrows. These transitions have different
probabilities (the numbers placed close to the arrows). Note that the sum of all the
probabilities of the outgoing arrows with the same color in each state equals one

[I.2 Bayesian Inference

Inference can be defined asthe process of drawing conclusions. If this process is

carried out using a data set that may suffer random variations, it can be then specified

as statstical inference.Bayesi an inference is a method of i nf
rule is used.

Bayesd rule computes the posterior distribution
called likelihood distribution (e.g. experience or knowledge). This computati on

method is nothing but an updating process . Bayesd rule can be expresse
5 o 0 agh D @
R0 Ve

In the previous formula , 0 ¢&D represents the posterior distribution, 0 ¢ is the prior
distribution, 0 G&b is the likelihood distribution (i.e. what is the probability of

obtaining b after having observed a) and 0 & is the marginal likelihood, which is

independent of the hypothesis which is being tested (i.e. it does not affect the posterior
distribution if the hypothesis is changed).

Bayesd rul e ciatwermba asmple éxample:enthgine that an old friend

tells us that he has bought a new house. Consider three different hypothesis: the new
house is in a big city, the new house is in the countryside and the new house is under
the sea. Now imagine that our friend gives us a photograph in which the house

location appears. This photograph represents the prior distribution.

1 If the picture shows a city, we will consider that it is likely that the new house
is in a big city. If the picture shows a large green field, we will follow the same
reasoning process to state that it is likely that the house is in the countryside.

1 However, it the picture shows the sea, we will still consider the third
hypothesis unlikely. The reason for thi s is simple: in the first two cases, our
previous knowledge (i.e. the likelihood distribution) t ells us that it is possible
for a person to live in the city or in the countryside, whereas in the third one,
our experience tells us that people do not live un derwater.

With this example, it is possible to notice that Bayesian inference does not only rely on
evidence, but in previous knowledge or experience to update the conclusions that are
drawn. Particle filtering takes advantage of this specific updating process.

Hardware Based Particle Filter with Evolutionary Resampling Stage



12 Particle Filtering

1.3 Monte Carlo Methods

Monte Carlo methods, also called Monte Carlo simulations , are a set of computational

algorithms that rely on repetitive random sampling in order to obtain numerical

results. These algorithms can be illustrated with a simple example. Imagine that we

want to compute the value of 6 wusing Monte Carlo
keep in mind the following relationships:

N

6 “ :) “ :)Y

o} a ¢ oY
Running a Monte Carlo simulation consists of throwing random samplesto the whole
search spaceuntil a significant population is generated (i.e. with enough particles to

consider the distribution as unbiased). Keeping this in mind ,the v al ue of 6 can be
approximated using the following expression s:

. 0
(0] = -
(0] T
“ N “ ‘E
D vy 10—

0
The area ratio has been approximated as the quotient of the number of random
samples inside the circle (& ) over the total number of samples drawn (0).

From now on, we will assume that processes are modelled as Markovian, non-linear,
non-Gaussian statespace models. The hidden states will be noted as w, and the
observations asw. The equations of the model will be expressed as follows:

n W
n 0L
The first equation corresponds to the process model (i.e. the dynamic equations of the
system) and the second to the measurement model.Note the difference between this
problem statement and the equations that were used to introduce the Kalman filter,
which were lessgeneralUsi ng Bayesd rule, which can also be
it is possible to obtain the posterior distribution:
nwygPg A g
LNy AN dg Txog

N WyIWq
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The ideal situation would be to be able to simulate (or generate) N independent and
identically distributed samples (i.e. the socalled particles) from the posterior
distribution n wqyW4 . However, in real -world appli cations this sampling strategy is
not available in most of the cases.

In order to cope with those processes in which perfect Monte Carlo sampling is not
available, another sampling strategy called Importance Sampling (IS) is used. An
arbitrary distribution , the so-called importance sampling distribution (also referred to
as the proposal distribution or the importance function) is introduced. Given that now
the samples are not drawn from the posterior distribution, but from the arbitrary

importance distribution, they have to be weighted in order to obtain the same results.

ECTEST]
0 oy o4
WqIg
The previous expressions represent the importance sampling distribution and the
weight functions respectively.

Importance sampling is considered a good Monte Carlo integration method. However,
it is not suitable for iterative implementations, as in the Kalman filter (refer to Fig. 1.1).
Therefore, some modifications have to be introduced in the algorithm so that all
equations can be expressed in arecursive manner. The following equations are the
result of this modifying process, and this implementation is named sequential Monte
Carlo method:

“@gg g Wy T Oy g

s g s O A oW

Vw0 w O—/—— =

This approach is said to be recursive because the current value is computed using the
previous values and performing an arithmetic operation on them (e.g. multiplication) .

A special case appears when thechosen importance sampling distribution is the prior
distribution. The equations are then expressed as follows:

gy Nwg Nog N ow
0w e 0w JNow
In conclusion, Sequential Monte Carlo method s are basedupon:
1 Importance Sampling from prior distribution, i.e. process model 1 @®Iw
1 Weight update using the measurement model 1 O .
1 Recursive implementation (i.e. sequential).

For further information on sequential Monte Carlo methods, please refer to[3].

Hardware Based Particle Filter with Evolutionary Resampling Stage



14 Particle Filtering

1.4 Characteristics

The basic patrticle filter is based upon SIS (Sequential Importance &mpling). However,
this sampling strategy generates the secalled particle degeneracy problem. It is
assumed that a given population has suffered from this problem when, having run a
finite time, the simulation has reached a state in which only one patrticl e has its weight
with non -zero value.

YWyeights at t = 200

1 T ) T T T T T T T
] _________ 0 S ________ JRNNE -
08} ________ SR R S _________
i ________ SO S - R S ]
Y] SRR S S SRS TR S ________ ]

EA‘-’ |:|5_ ......................... o ........ .................
) SR R D 1 B _________ SR - ]
] SR N _________ Lo SO S ........ R -
02} oo S - ________ S S - _________
m ________ S - S - R -

N N U S | H N S S S

0 100 200 300 400 &S00 BOO 70O 800 900 1000

k

Fig. 11.2. Particle degeneracghenomenon

In Fig. 11.2, a realparticle filter application is shown. The x-axis represents the number
of particles, whereas the y-axis represents the value of the different weights. Note that
the effects of particle degeneracy are very significant. Although the simulation has run
only up to t = 200 (i.e. finite time), the population is now biased, having only one
particle that is representative.

The particle degeneracy phenomenon has been thoroughly analyzed and studied. In

1993, Gordon, Salmond and Smith introduced the so-called Bootstrap Filter [4]. In their

work, a novel resampling strategy was presented in order to mitigat e the effects of the
aforementioned problem. Some authors consider this proposal as the first formal

particle filter in history.

Hardware Based Particle Filter wittEvolutionary Resampling Stage
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The resampling stage of the Bootstrap Filter is very simple: if the particle population
has N individuals, then N random number s from a uniform distribution "Yrip are
drawn. Afterwards, this random value is compared with the cumulative sum vector
of weights, selecting the resampled element as follows:

6 v Yrip hiy 6 N wi
In the previous equations, A is the cumulative sum vector of weights, 6 is the random

sample drawn from the uniform distribution, 1 is the resampled population vector and
wis the posterior population vector (i.e. before the resampling stage).

Note that with this approach, there is a resampling process in each time step. More
recent examples perform adaptive resampling strategies checking whether the
effective number of particles is below some threshold or not, but the underlying

concept is the same.The effective number of particles is usually computed as T

« fatticle placement at t = 100 Particle pgEement after resampling at t = 100
T T | 10— | ............. T a ..... 3

2|:|----§* ........... ........... ........ i

15k .. ............ ............ .........

Fig. 11.3. Sample impoverishment phenome(rorasurement in black; estimation in green)

Hardware Based Particle Filter with Evolutionary Resampling Stage



16 Particle Filtering

Further analysis regarding resampling stages have discovered a new problem: the so
called sample impoverishment phenomenon. This phenomenon occurs when the
whole set of individuals do not approximate accurately the posterior distribution,
usually because avast majority of them is at the same point (i.e. the particles are the
same). Studies have also shownthat diversity loss is caused by using suboptimal
resampling strategies (as the one used in the Bootstrap Filter).

A good example of the sample impoveri shment phenomenon can be found in Fig. 11.3.
The picture shows the particle distribution and the weights before ( on the left side)
and after (on the right side) performing resampling. It is clear that the resampling stage
modifies the population in order to reduce the particle degeneracy problem (which
indeed is mitigated), but there is a clear loss in terms of population diversity. Note that
after performing resampli ng, all the weights have the same value. This is part of the
resampling stage itself.

Once the main problems of particle filtering have been discussed, a question arises:
how can particle filtering estimate the state not as a probability distribution but a s a
unique point? The answer is quite simple, and has been represented in the following
equation:

w 0 W
Therefore, the estimated state is the weighted sum of all the particle states.

Perfect Monte

Carlo Sampling Sample from i} 40 q

Importance Sample from* @y qy

Sampling Weight update 0 @4 %

Samplefrom“ (.Oqgoq “ (A)(l 3*)(1 o) (A)%A)q, Fh)(i
WWo W
wwyg hog

Sequential Importance
Sampling Weightupdate 0 ® ® U @

Sample from* @y “ ©g Wq T Oy P g
WWo W

(A)CL)CL h.l)(l

Perform resampling to avoid particle degeneracy

Sequential Importance
Resampling

Weight update 0 ® © 0 @

Fig. Il.4. Particle filter algorithmic evolution
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The natural evolution of particle filtering is shown in  Fig. 11.4. From perfect Monte
Carlo sampling (i.e. samples drawn from the posterior distribution) to SIR (Sequential
Importance Resampling), including IS and SIS, each stage goes a step further into the
final approach. Current research lines are focused on the green rectangle(i.e.
Sequential Importance Resampling), trying to improve the resampling strategies that
are used. These lines will be presented in the next section

To summarize, particle filters are a very useful tool in estimation and prediction tasks ,
especially when dealing with complex systems (non-linear non-Gaussian models).
However, particle filter designers have to deal with two big problems:

9 Particle degeneracy: the effective number of particles (i.e. hose whose weights
are bigger than zero) tends to one in a finite simulation time. This problem
appears per se in the basic particle filter implementation (SIS), and can ke
solved using resampling stages.

I Sample impoverishment: the population does not repr esent accurately the
posterior distribution (for instance, all the particles in the population are the
same). This problem is caused by suboptimal resampling strategies, and can
only be mitigated changing the resampling stage.

I1l. Current Research Lines

In this section, stateof-the-art particle -filtering techniques will be reviewed. These
technigues can be divided in to two main groups: algorithmic improvements over the
basic particle filter, and implementation improvements (i.e. changes in the technology
used to implement the particle filters). This research work is more focused on
algorithmic improvements based on evolutionary computation, which has also been
included as a modification of the basic particle filter architecture in the literature [5].
Refer to the following chapter for further information on this topic.

The most remarkable implementation improvements regarding the scope of this thesis
are the ones related to hardware implementations. Several approaches have been
presented and can be found in the literature. The first one that will be cited is [6]. In
this paper, the authors present a hardware implementation of the Bootstrap Filter [4].
The design is described using VHDL and the target platform is a FPGA (specifically a
Xilinx Virtex -2). FPGA parallel processing capabilities are used in[7], where the same
particle filter is implemented in order to process data concurrently. Every stage
performs its comp utation while the others are working with other valid data, i.e. the
processing is carried out in parallel. This parallel implementation also leads to a
significant decrease in terms of resource consumption (on a Xilinx Virtex -5 FPGA). A
different approach is presented in [8], since the implementation is not done only in
hardware. On the contrary, a System on Programmable Chip (SoPC) approach is
analyzed. An embedded processor carries out the weight computations, whereas the

Hardware Based Particle Filter with Evolutionary Resampling Stage
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particle update, which is a repetitive process, is speeded up using hardware
accelerators.In addition , in this paper some elements from evolutionary computation,

such as tournament selection algaithms in the resampling stage, are introduced. The
platform used in [8] is an Altera Cyclone Il FPGA, as opposed to the previous
examples, in which only Xilinx devices were used. Another modified version of the
particle filter that is implemented in a FPGA is pre sented in [9], this time using color
histogram enhancements. The authors take advantage (again) of the parallel
processing capabilities of the configurable device (another Xilinx Virtex -5 FPGA). Both
weight and histogram calculations are carried out using these capabilities.

In the last few years, there has been an increase in theamount of works related to
performance improvement in particle filter implementations . Complex particle
filtering algorithms (e.g. with huge number of particles , high dimensional problems,
etc.) require more and more computational resources. In order to enhance the system,
parallel computing has appeared as a feasible alternative to the chssical approach. In
[10] the authors compare the results from a classic CPU implementation with the ones
obtained from a GPU implementation (using CUDA). Their re sults show that the more
parallel the approach is, the faster the processingcan be done However, some increase
in the average error appears, due to the fact that each parallel block resamples from a
small number of individuals and not from the whole popu lation. Another example
can be found in [11], where different parallel implementations (GPGPUs and
multicore CPUs) are evaluated with a system that uses over one million particles to
perform the computations. In this paper, an extensive sensitivity analysis is carried
out, scaling parameters such as the number of particles per filter, the number of sub-
filters, and even the state dimensions. The authors have also extended their research
to real-time control applications of distributed computing approaches to particle
filtering, as in [12].
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Evolutionary Computation

. Introduction

I n 1859, Ch aThd Grigin obSpeciesaspéblshed. In that book, the concept
of natural selection is introduced as the main reason for a given population to evolve.
In any real environment there are limited resources, thus having the individuals to

compete for them. Natural selection is the phenomenon in which only those
individuals that achieve high levels of adaptation to a specific environment survive.

Therefore, natural selection can be expressed as the survival of the fittest.

Evolutionary progress is based on two basic elements: on the one hand, the
aforementioned natural selection, or competition -based selection; on the other hand,
genetic transference throughout generations of those characteristics (or traits) which
make eachindividual better than the rest of the population .

Natural selection can be analyzed on a microscopic basisby means of molecular

genetics. Genetics states that each individual has external characteristics (phenotype)

that can be represented at a low level (genotype)ie.each i ndi vi dual s phenoty
encoded by its genotype. Therefore, the phenotype can be huilt using the genotype.

In each generation, new individuals are generated. In biological environments, these
individuals can be identical to their parents (e.g. mitosis) or inherit different traits from
each parent (e.g. meiosis).In addition to that, so me random changes tend to appear
between generations (the soecalled mutations) and contribute to have new individuals
to evaluate. These genetic operations can be seen ifrig. |.1.

RisY
=)
Y
(@) (b)

Fig. 1.1. Genetic operabns: (a) Meiosiqup) and mitosigdown). (b) Mutation

Evolutionary computation tries to apply these biological concepts to automated
problem solving. Itis commonly assumed that evolutionary computing began b ack in
1948 when Alan Turing, who is considered to be the father of computer science and
artificial intelligence, wrote an essay while he was working on the Automatic
Computing Engine. In his work, Turing stated that o | f we are trying to pr
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intelligent machine, and are following the human model as closely as we can we should begin
with a machine with very little capacity to carry out elaborate operations or to react in a
disciplined manner to orders (taking the form of interference). Then by applying appropriate
interference, mimicking education, we should hope to modify the machine until it could be relied
on to produce definite reactions to certain commands. This would bedineibg of the

p r o c H]sthus iitroducing the idea that artificial evolution can be performed on a
machine. However, it was in the 1960s when this concept was deeply explored. There

were three different research lines, clearly separated: evolutionary programming

(Fogel, Owens and Walsh), genetic algorithms (Holland) and evolution strategies
(Rechenberg and Schwefel). Both evolutionary programming and genetic algorithms

were developed in the USA, whereas evolution strategies were developed in
Germany. Another research line called genetic programming appeared in the 1990s.

In the last few years, all these algorithms have been considered subareas ofwhat is

known as evolutionary computing or evolutionary algorithms , thus ending the
traditional separation between them.

Il. Evolutionary Algorithms

An evolutionary algorithm can be seen not only as an optimization algorithm (in
which every new solution is clo ser to the optimal one), but also as a process of
adaptation (the environment selects the best solutions. i.e. the ones that are best
adapted to its conditions). In order to measure this, it is absolutely necessary to define
what is called fitness function, which gives an idea of how good a solution is.

The underlying theory can be expressed as follows: given a fixed population
(individuals), a new set of candidates (i.e. possible solutions) is generatedrom some
of the best elements by recombination and/ or mutation. Afterwards, the whole

population is evaluated in terms of the fitness function, and then the best individuals

are allowed to pass to the next generation. The pseudocode of a generic evolutionary
algorithm is shown in Table ll.1.

INITIALIZE_POPULATION ();

EVALUATE_FITNESS);

while ( CONTINUE_ITERATING

{
PARENT_SELECTION;
RECOMBINATION;
MUTATION);
EVALUATE_FITNESS);
SURVIVOR_SELECTIOK;
set CONTINUE_ITERATING ;

}

Tablell.1. Generic evolutionary lgorithm pseudoode
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Initialization Population Termination

Parent selection Survivor selection

Recombination

Parents

g Offspring

Mutation

Fig. 11.1. Evolutionary algorithm flowchart

In Fig. 1.1, the generic evolutionary algorithm flowchart is shown, emphasizing the
iterative process that takes place.

The initialization process is usually random, i.e. the first population is generate d
randomly. The termination condition can be set according to different criteria: limit of
generations reached, fitness variation below user-defined bounds (diversity loss),
fithess close to an acceptable value, etc.

1.1 Components
There are some elements th& must be taken into account when dealing with
evolutionary algorithms. These are the main components:

1 Representation

1 Fitness function
1 Genetic operators
1

Selection operators

[1.1.1 Representation

This is a very important element in any evolutionary algorithm definition.  Each
individual has to be uniquely defined by its representation. Looking back to the
biological systems, an analogy can be established between genotype and
representation. Every candidate solution would be determined by a set of genes (the
same way phenotype was determined by genotype).

Representation | Individual
Genotype Phenotype
110|0|1 9
10|01 -7
Tablell.2. Representation examples

Two representation examples have been provided in Table II.2. Although both have
the same genotype, the phenotype is completely different. In the first example the
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genotype encodes an unsigned integer, whereas in the second it is used to encode a
t wods compl e me n fTheeforg, it is aktremelytingpgriant to adopt a good
representation scheme, as well as to maintain it throughout the w hole algorithm,
because the rest of theoperations will be based on it.

In evolutionary algorithms terminology, the genotype or representation is usually
referred to as chromosome, i.e. a set of characteristics(genes) that define the
individual.

[1.1.2 FitnessFunction

The fitness function is also called evaluation function, and it is an expression used to
measure the quality of a solution, i.e. how close to the theoretical best achievable
solution the current one is.

Given that evolutionary algorithms are often used to solve optimization problems,
sometimes the fitness function is referred to as objective function. It is important to
keep in mind that the definition of a good fithess function, along with a good

representation scheme, is the root of a welldesigned and effective evolutionary
algorithm. For instance, if the problem is to find the value within an interval whose
square value is higher, a good choice for the fitness function would be Qo .

[1.1.3 GeneticOperators

A genetic operator can be defined as a mehanism whose function is to introduce
diversity in any given population , generating new candidate solutions. Trying to
replicate natural (biological) systems, two different operations have been proposed:
on the one hand crossover; on the other hand mutation. The former approach uses two
individuals (the so -called parents) and generates two children by recombining genetic
characteristics from each parent. Therefore, any children has features inherited from
both its parents, and the best genes can be transfeed from a generation to the next
one. The latter uses only one element to generate a new individual (another child) by
changing one or even more of the genetic traits of the parent. With this mechanism
new genes which could provide better adaptation lev els, appear.

G 1 o 1Moo 11 ilil0l1]
chigren  |ENENEREN  ICRNCRCIEY BN o T
Crossover Mutation

Fig. 11.2. Genetic operators over a binary representation (chromosome)
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Differences between both genetic operators can be seen itFig. 11.2. On the left side, a
crossover operation is performed. Note that each child has half the genes from each
parent, thus merging their genetic information . However, only one parent is necessary
when the genetic operator is mutation, as it is shown on the right side, where only one
gene is changed within the whole chromosome (this particular gene has been
highlighted in red in order to emphasize the change) .

One of the most important characteristics of this genetic operators is randomness, i.e.
they are stochastic processes.Mutation has to be a random process in order to
introduce only non -biased changesin the population. Crossover depends strongly on
random drawings to decide which part of the parents would be recombined and in
which way.

Depending on the specific evolutionary algorithm, these genetic operators may or may
not appear. It is a task for the designer to choose whether to use crossover, mutation
or both operations. Further information regarding the different p roposed algorithms
would be provided in the following sections.

[1.1.4 Selection (perators

In each iteration (generation), two selection processes take place. The first one is used
so that the mating pool, i.e. the individuals that would be the parents, can be selected.
The second selection process is in charge of discarding those individuals that are not
well -suited for the environment in which they are (this takes us back to the concept of
natural selection).

Parent selection is usually done using a stochastic process, in order to allow that even
weaker individuals can be promoted to the parent status. The reason for this process
to be based upa random drawings is simple: it prevents from getting stuck at a local
optimum. Therefore, every individual has a chance to become a parent, even though
the probabilities are not the same (stronger individuals, i.e. with higher fitness values,
are more likely to be chosen than weaker individuals).

As opposed to parent selection (stochastic process), survivor selection is usually a
deterministic process. There are a lot of different possible implementations such as
ordering the individuals according to their fitness values and selecting as survivors
the top segment, or using age criteria: only the children survive, individuals whose
fitness is weighted with the number of generations they have been alive, etc.

Selection operators are the algorithmic component that allow s good features, which
have been generated through genetic operations, to be transferred fromone generation
to the next ones (note that genetic transference was one of the basic foundations of
evolutionary progress, and that it is indeed carried out in this particular step in the
evolutionary algorithm ).
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[1.2 Characteristics

Evolutionary algorithms provide us with good problem -solving capabilities.
Moreover, the solutions obtained using these techniques are(in most of the cases, but
not in all of them) by far better than the ones which could result from a random search,
even though evolutionary algorithms are highly dependent on random processes.

Evolutionary algorithms are also commonly thought of as gene ric problem solvers.
The same algorithm could be used to solve problems that are not related at all. The
reason is simple (and has already been explained} the actual solutions (phenotype)
are encoded in each chromosome(genotype). Therefore, if two non-related problems
can be expressed using the same representation and their fithess can be evaluateth
terms of the same fitness function, the algorithm is well -suited for both computations.
However, these algorithms have a drawback that is worth noticing: th e more generic
the problem solver is (i.e. the wider the range of problems it can be applied to), the
worse the solutions are. This means that evolutionary algorithms would lead to good
solutions, but specific problem solvers would end up finding better results. Therefore,
a tradeoff between the number of problems the algorithm can solve and the quality of
the solutions appears. This tradeoff is shown in Fig. Il.3. Nevertheless, decreases in
the quality of the solution caused by evolutionary computing are negligible comparing
with the flexibility it entails, and this is the reason why evolutionary computing is
widely spread nowadays.

A
Problem-oriented algorithm

Evolutionary algorithm

Random search

Average solution quality

v

Problem range

Fig. 11.3. Comparison between different problewilving algorithms

How does an evolutionary algorithm work? Generally speaking, the working cycle of

any of the different approaches consists of two stages. In the first stage, the algorithm
searches the solution space, starting from the random initialization values. Once the
algorithm has found what could be considered as a good solution, the second stage
starts. In this step, the algorithm tries to improve the current solution. These two stages
are clearly differentiated if analyzed on a time vs. improvement basis. The firs t stage
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shows large variations in fitness values in a few generations, whereas in the second
stage the changes are almost insignificant.This temporal analysis becomesparticularly
useful when defining some termination conditions, e.g. a good termination c ondition
based on the execution time would be to stop when the optimization process has
reached this second stage.
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Fig. 11.4. Fitness evolution vs. number of generations

Fig. 11.4 shows a real example of an optimization process using a genetic algorithm.
There is a huge increase in the fithess value from generation #1200 to approximately
generation #2000. This correspads to the aforementioned first stage of the
evolutionary search. After generation #2000, the algorithm seems to stop its search
(the fitness gets stuck in a plateau especially after generation #5000, due to the fact
that better solutions are more and more unlikely to appear .

In the forthcoming sections, some of the most used examples of evolutionary
algorithms would be explored. First, the four traditional lines (i.e. genetic algorithms,
evolution strategies, evolutionary programming and genetic programm ing) and then,
a set of new ideas that have been developed all over the yearsThe main lines would
be presented in their most common approaches, which means that subtle variations
might be found in the literature.
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1.3 Genetic Algorithms

Genetic algorithms are said to be the most extended form of evolutionary algorithms.

Commonly used in optimization problems, these algorithms use nu meric strings as
representation, usually in the form of binary or integer arrays. Although both

crossover and mutation are used, the former is the main operator. The parent selection
scheme uses a fitnesshiased random approach. On the contrary, the survivor selection
scheme is usually generational (only the offspring survives , thus replacing the whole
previous population ) or deterministic (always taking into account fitness criteria).

[I.4 Evolution Strategies

Evolution strategies try to take advantage of a very important feature: self -adaptive
capabilities. In order to achieve this goal, some algorithmic parameters are evolved
along wit h the solutions (these parameters could even be included as part of the genes
that constitute a chromosome). Each chromosome is usually represented as an array
of real numbers. Evolution is mutation -based in almost every case, but recombination
can also ajpear as intermediate recombination (i.e. averaging the genes of the parents),
or discrete recombination (i.e. selecting randomly as a child one of the parents). Each
individual within the population has the same likelihood of being selected as a parent
(no fitness-biased criteria appear in this approach), and the surviving population can
be generated @lways as adeterministic process) using only the offspring or including
the previous population to the offspring. The former strategy seems to provide better
results, because it avoids the memory effect, allowing transitions from local optima.

[I.5 Evolutionary Programming

Evolutionary programming is really useful when the target problem is to optimize a
fixed program structure which has some parameters that can bechanged. Originally
developed to generate artificial intelligence (emulating learning processes),
evolutionary p rogramming considers adaptation and environment prediction must -
have features. This algorithm is only based on mutation, generating one child f rom
each of the individuals, i.e. every individual is considered a parent. Survivors are
selected randomly from the initial population plus the offspring.

The traditional approach used in evolutionary programming, which illustrates
accurately the underlyin g concepts of this field, was to evolve a predictor system
represented as a finite state machine or FSM. As stated before, the architectural
characteristics of the systems are fixed, but some parameters can be changed: number
of states, number of inputs, number of outputs, adding or deleting transitions between
states, changing the initial state, etc. However, this classical example is no longer
considered as standard evolutionary programming, due to the fact that this algorithm
has been mostly used to optimize real-valued parameter vectors since the 1990s.
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1.6 Genetic Programming

Also focused on program optimization, the main difference between evolutionary
programming and genetic programming is that the latter represents each program as
a tree and changes itswhole structure (as opposed to the former, in which only some
parameters were changed). Both genetic operators can be used in order to modify
branches in the trees (recombining by swapping, or mutating by adding or deleting
some of the leaveg. Parent selection follows the sameschemeas in genetic algorithms
(fitness-biased random selection), and survivors are selected using generational
criteria (i.e. only the offspring survives).

Fig. 11.5. Genetic programming representation: tree structure

In Fig. 1.5, a typical chromosome in genetic programming is shown. The genotype
encodes the function Qafto.  —— VD ED .

[1.7 Other Approaches

Evolutionary computing has been a developing field ever si nce it appeared. There is a
vast range of different implementations and algorithms, but for the sake of
convenience only a few of them will be presented here.

When dealing with complex problems which can be divided in simpler subproblems,
memetic algorithms may be a wise choice. These algorithms are hybrid, for they
combine evolutionary processes and problem-solving knowledge (heuristics). Given
that a new component is introduced, a new stage is also necessary: the learning stage,
in which the algorithm gat hers every piece of knowledge that is available. Memetic
algorithms can be found in the literature as hybrid genetic algorithms, Baldwinian
evolutionary algorithms or Lamarckian evolutionary algorithms, but all of them have

in common the addition of one or more local search (i.e. better solutions in the
neighborhood of a known one) stages to the traditional evolutionary algorithm.
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Coevolution seems to be the most appealing concept regarding evolutionary

computing, and can be implemented as a cooperative algorithm or as a competitive

algorithm. Either it is one or the other, the population has different species. In

cooperative coevolution, each species represents a part of the problem and cooperate

in order to come with a solution of a larger problem. As oppo sed to that, competitive

coevolution is based on individuals gaining fitne
species fight against each other.

The last example of evolutionary computation techniques is called interactive
evolution , and turns out to be very useful when dealing with problems in which there
is no such thing as a clearly defined fithess function. Subjective opinions have a strong
influence in the selection process. Therefore, biased external interference is what best
defines interactive evolution, even though this interference might or might not be
direct (e.g. deciding whether an individual can survive or not).

[1l. Current Research Lines

Evolutionary computation is an enormous research field . Therefore, we would only
present those works closely related to particle fi ltering (i.e. particle filters which have
been enhanced with evolutionary computing).

Particle filtering and evolutionary algorithms, especially genetic algorithms, have
conceptual similarities. These similarities have been studied and documented for a
long time. For instance, in [2] a modified particle filter is presented. The author uses
genetic operators such as crossover and mutation toimplement the pred iction stage
of the filter, describing the whole algorithmic implementation of what he calls Genetic
Algorithm Filter . The connection between patrticle filtering (Monte Carlo simulations)
and Bayesian inference and their application to evolutionary environments has also
been studied. In [3], the foundations for Bayesian evolutionary computation are
presented. The idea is to guide the evolutionary proc ess using Bayes®6 rul e
stated in the paper that the most probable solution could be considered the bestone.
However, this is not state-of-the-art research.

In the last few years there has been a significantly higher interest in using evolutionary
computing concepts in particle filtering. All the conducted research is bcused on
reducing one of the two main problems a suboptimal resampling strategy generates:
sample impoverishment (refer to the Particle Filtering chapter for more information
on this particular issue). Evolutionary algorithms, as stated in previous sections, use
genetic operators in order to transfer good genes and to introduce genetic diversity.
This last feature is the key to understand why evolutionary computing is suitable for
solving sample impoverishment (i.e. diversity loss) problems. Hence, in [4] another
evolutionary approach is introduced in order to mitigate those effects. At the very
beginning of the paper, the authors state that previous works in the field had not fully
exploited the advantages of evolutionary computing. Therefore, they propos e
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introducing genetic operators right after performing the importance sampling stage
and immediately before the resampling stage, which uses a parameter (effective
number of particles) in order to decide whether to perform resampling or not. In this
paper it is also shown that the mutation operator provides better dynamic response
when the state jumps abruptly.

Other research lines use parallel distributed filters, i.e. with several subpopulations
evolving at the same time. In [5], the authors use these subpopulations to perform
genetic operations and, from time to time, migrate the best individuals from one
subpopulation to the others so that the best genetic traitscan be shared. This also leads
to an improvement in global optimum search. Moreover, the concept of genetic
resampling stage is introduced in this paper for the first time. Nevertheless, the paper
provides only simulation results.

More complex examples can also be found in the literature: a hybrid evolutionary
particle filter is presented in [6]. This hybrid approach tries to take advantage of both
genetic algorithms (to maintain particle diversity) and particle swarm optimization (to
optimize the final particle distribution) . Furthermore, the algorithm presented has
parallel features, thus reducing computation times. The strategy presented divides the
population in two groups, and then performs the specific operations that are required:
in one group, a genetic algorithm; in the other, particle swarm optimization. Before
the next time step, a migration operation is perf ormed (to share genetic information,
as in previous examples).

Realworld applications include object tracking, as in [7]. Another evolutionary
approach is presented in order to deal with sample impoverishment. In this case, the
evolutionary resampling stage may or may not take part in the estimation loop. The
decision is made based on the aforementioned parameter, i.e. the effective number of
particles. The algorithm presented provides good results but it is not accurate in
occlusion tracking sequences.

Recent studies with differential evolution have been conducted in order to reduce
significantly sample sizes [8]. The differential evolution algorithm divides the particles
in three different groups: the firs t group would undergo crossover; the second group
would undergo mutation; the last group would not suffer any modificati on. One
important fact about this work is that the evolutionary stage takes place at the very
beginning of the process, and it is immediately followed by the importance sampling
stage.

In conclusion, evolutionary computation has found a vast field of appli cation in which
optimization is not the main concern. The characteristic properties of the genetic
operators make evolutionary algorithms a potential tool in particle filtering, since they
are able to reduce to almostnegligible values both problems: particle degeneracy (it is
avoided performing resampling) and sample impoverishment (it is avoided
introducing genetic diversity in the particle population).
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Evolutionary Particle Filter

. Introduction

In this chapter, the prop osed architecture ispresented. The Evolutionary Particle Filter
has been designed formovement estimation application s. In this application, the state
variables are four: x-axis position, y-axis position, x-axis velocity and y-axis velocity.

X
Fig. 1.1. State variables

As far as this implementation is concerned, it has been assumed thatthe movement
does not have any acceleration at all. The only allowed changes in both velocity
components are the ones causedby the addition of random noise. The motion
equations can bethen expressed as follows:
Lw LW 0
r LW L® 0
This motion model can also be expressel in matrix -based notation:
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As opposed to [1], this model does not perform any estimations regarding the current
velocity in each axis. Therefore, asignificant reduction in terms of memory resources
is achieved, since it is no longer necessary to store previous position values.
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However, the state space is not observable. The only state variables that are
measurable are both xaxis and y-axis positions. Therefore, the measurement model
can be represented (in matrix notation) as.

g Og
~ P MMM aw
© mTp T mnmTm B Ao

The most important advantage this proposal has is that it is highly application -
independent. This estimation engine can be used to track a wide range of different
elements, as long as their state can be expressed as thdaementioned eg array. This
feature makes the system incredibly suitable for a reconfigurable platform. By using
different (reconfigurable) preprocessing stages, the Evolutionary Particle Filter can
track colored objects, corners,shapes etc.

Initialization

Process Model Importance Sampling

A

Evolutionary Resampling
Measurement Model
+
Actual Measurement
Weight calculation

A 4

State Estimation

Fig. 1.2. Evolutionary Particle Filteflowchart

The modified flowchart of the Evolutionary Particle Filter is shown in  Fig. 1.2. Note
that this flowchart is based on the basic particle filter but adding an extra stage, which
is in charge of performing resampling using an evolutionary algorithm.

The rest of this chapter is organized as follows: first, the algorithmic implementation
of the evolutionary resampling stage will be presented and discussed. Then, the
hardware -based modules will be explained in detail.
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II. Evolutionary Resampling Stage

Placed right after the Importance Sampling process, i.e. the process model update, and
immediately before weight calculation and state estimation, the evolutionary

resampling stage constitutes itself the distinctive element of the EPF algorithm.

Although s ome approaches can be found in the literature (as in the aforementioned
proposal of [2]), some modifications have been introduced and will be discussed in
the forthcoming paragraphs.

A genetic algorithm has been selected, due to the flexibility of introducing both genetic

operators (crossover and mutation) and to the fact that chromosomes will be
represented as integer arrays.The target application has some timing constraints (e.g.
frames per second in the camera) therefore, the termination condition is set to be
reaching afixed number of generations.

1.1 Crossover

Arithmetic crossover will be used as recombination operator . Crossover takes place
whenever a random number fx "Y1ip satisfies i} 1, being n the crossover
probability. Arithmetic crossover can be expressed in terms of the following equations:

®w | W p | I
@ | w p | MW
where @ and @ are the children, i.e. the offspring, and can be obtained weighting the

states of the parents® and & . The subscripts (k) represent the current time step in
which the system is, whereas the superscripts are the individual identifiers ( a, bfor the
children; i, j for the parents). The weight factor is a random number drawn from a
uniform distribution | x "Y 1ip .

1.2 Mutation

Mutations should occur whenever a random number fx "Y 1ip satisfiesn 1} , being
1 the mutation probability. In this proposal, two mutation operations can be

performed. If i 1 3 , with i ——  being the mutation ratio, a local

search mutation operator is used. Otherwise, the mutation operator generates a
random child ov er the whole search space.

Local search mutation adds Gaussian noise i.e.random numbers, to the parents@state
variables, as can be seen in the following equation:

W W ]

Random placement mutation generates a random child using this expression:
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W o I Jw W
In these expressionsw is the child, @ the parent (only in local search mutation),
1x0'Rh TTEUT DAIADBABAQ&ET Bnd®  the limits of the search space
(only in random placement mutation), and 1 x “Yrip (only in random placement
mutation).

Each of these two mutation operations has adefined purpose. On the one hand, local
search helps reaching close optimal points. On the other hand, random placement
promotes global opti mization (not just | ocal), making possible for the population to

jump to unexplored regions in the state space and evolve there. Hence, better solutions
might be obtained.

[1.3 Selection

The chosen selection algorithm is the soecalled Stochastic Universal Samping (SUS).
This algorithm appears as a development of Fithess Proportionate SelectionFPS) also
known as roulette wheel algorithm, even though the drawing of random numbers is
carried out in a different manner. Considering that €  elements have to be selected,
FPS draws ¢  different uniform random numbers, whereas SUS only draws one
using a uniform distribution.

. BQ

Y e

In the last expression, "Qis the fitness value of the individual @, & is the number of
individuals that have to be selected, and i is the value which is drawn.

How does Stochastic Universal Sampling work? First, individuals have to be sorted
according to their fithess value.

“Q “Q !\Q E “Q “Q
QM Q E Q Q
Then, the cumulative fithess vector is computed starting with the individual that has
the highest fitness value.

Ao

Once the random number i has been drawn, the individual k is selected ifi 1 .
Otherwise, i is incremented as follows:
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| Xo X1 | X2 Xs | Xa | Xs |
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Fig. Il.1. Stochastic universal sampling

Therefore, the idea is that every selected individual is equidistant with the previous
and the following element. A good example has been provided in Fig. 1.1, where
3 X. The first element is selected using the random number i, and then the
following elements are obtained adding a fixed increment, which depends on both the
number of desired selected individuals and the maximum value of the cumulative
fitness vector. In this particular example, the seven selected individuals are
o Foo Foo Foo Foo Foo Fo . This selection algorithm has very important features, such as
being unbiased. However, the most important characteristic is that with this selection
strategy, even the weakest members of the population can be selected as in the
previous example. This also prevents the evolutionary process from remaining stuck
at a local maximum.

[ ;

j ;

inc = gq[ N-1])/ N_SEL

r = inc *( rand ()/ RAND_MAX
while (i <N_SEL)

it (r<=a[j])
{

selected [i] =j;
r +=inc ;
i ++;

}

else

{

}
}

Tablell.1. Example code for Stochastic Universal Sampling selection

j ++:
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This selection scheme has been adopted in this work as both parent and survivor
selection algorithm. The main reason for this decision is that implementing more than
one selection algorithm might increase significantly resource utilization rates.
Therefore, survivor selection will be stochastic in this proposal, rather than
deterministic as in many examples in the literature.

To summarize, the proposed evolutionary algorithm is a genetic algorithm with
Stochastic Universal Sampling selection, arithmetic recombination and both local and
global mutation schemes, and its flowchart can be seen inFig. II.2.

Parent selection Stochastic Universégampling

Arithmetic crossover

Crossover ) ) : .
w | p | w % Y i
w | W P I w

Random placement Local search

e-
€

Mutation W I Dw @
1x 7Y Tip 1x0 "B,
Survivor selection Stochastic Universal Sampling

YES

Fig. 11.2. Evolutionary resampling flowchart
lll. Hardware Architecture

The Evolutionary Particle Filter has been implemented as an IP (Intellectual Property)

core, i.e. ahardware module. A modular approach has been adopted so as to make the
design stage easier and to favor reusability. Moreover, it could allow future

reconfiguration within the core itself.
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Unit Calculation Logic :
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Mutation i
Unit i
_—
] |
|
|
|
|
Random Main Secondary i
Number Particle Particle :
Generator Register Register | |
|
L |
|
|
I
|

Fig. 1ll1.1. Evolutionary Particle Filter block diagram

The proposed modular architecture can be seen inFig. 1ll.1. Some control signals and
data connections have been simplified in the diagram in order to avoid excessive
complexity. The signals highlighted in red represent the external connections of the
hardware module, i.e. the interface with the top system. The main modules of the
Evolutionary Particle Filter system are:

1 Random number generator.
Fitnesscalculation.

Particle registers.

Process model.

Crossover unit.

Mutation unit.

Dividers.

= =4 -4 -4 A -2 -2

Control logic.
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These blocks will be presented in detail in the forthc oming sections of this chapter.

Hardware designs have some limitations in terms of arithmetic operations. Desig ners
have to decide whether to use integer, fixed-point or even floating -point arithmetic .
There is an obvious tradeoff between precision and resource consumption (or time):
the more precise the operations have to be, the more complex the resulting systemis.
Focusing on the Evolutionary Particle Filter , it seems clear that estimation and
prediction tasks require accuratecomputations, at least to some extent.However, extra
complexity in the design is not desirable. For this reason, fixed-point arithmetic has
been selected as the most convenient implementation strategyin this thesis.

Fixed-point arithmetic uses real number representations in which the decimal part, i.e.
those digits after the radix point, and the integer part have a fixed size. For instance,
in Fig. IIl.2, ¢ would represent the size, in bits, of the decimal part, and ¢ would
represent the size of the integer part.

gl »

Fig. 111.2. Fixedpoint number representation

Having a fixed number of bits for both integer and decimal part generates some
problems. The first problem a designer might face is overflow or underflow

phenomena, which occur when the result of an operation cannot be represented with
the given resolution, i.e. the number of bits, the system has.For example, the result of
¢ T p qwith an unsigned integer resolution of 5 bits would be 4 instead of 36.

Another important problem of using fixed -point arithmetic is that not all the numbers
within an interval can be represented, since the less significant bit determines the
minimum increment. Therefore, the resolution is finite. For example, if the decimal
part resolution were 4 bits, the minimum increment would be 0.625.

In this design, numbers are represented as 19bit integers, unless otherwise specified:
8-bit decimal part, 10-bi t i nteger part and 1 bit to represent
This gives an overall representation range from -1024.0 0102399609375

1.1 Random Number Generator

Stochastic processes play a very important role in the Evolutionary Particle Filter. On
the one hand, normal -distributed random numbers are used in some stages (e.g.
process model update, or importance sampling). On the other hand, the evolutionary
algorithm uses uniform random numbers to decide whether to perform a genetic
operation or not. Therefore, the random number generator is an essential part of the
design.
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The targetapplication is not as demanding as a cyphering system would be. Therefore,
a pseudorandom number generator (PRNG) is enough to meet the requirements.
Moreover, designing a true random number generator (TRNG) would be a hard task,
since they have strong dependencies on physical phenomena that are really hard to
validate through simulation.

Uniform distributions of pseudorandom numbers can be generated with a linear-
feedback shift register, also known as LFSR.LFSRs are built using a shift register in
which the input bit is a linear combination of some of the register bits , i.e. a linear
combination of the register state. This linear combination can be done, for example,
with a XOR gate (actually, this is by far the most used alternative), and can be
expressed in terms of a feedback polynomial.

o @ @ @

>
g
Fig. Il 3. 3bit LFSR

A 3-bit LFSRis shown in Fig. III.3. The feedback polynomial for this specific LFSR is
N ® & p.Note thatin the feedback polynomial the bits that are combined
appear as®, being t the so-called tap.

LFSRs can be maimal -length only if there is an even number of taps, andif the whole
set of taps is relatively prime, i.e. no common divisor to all taps exists. If these
requirements are met, the LFSRwill go through all possible states, except that in which
all the bits are equal to zero.In maximal -length LFSRs,there are¢ p possible states,
being n the register size (i.e.the number of bits). If nis small, the sequence cannot be
considered as rardom. However, if nis set to be relatively large, the outgoing sequence
can be thought of as a random sequenceln [3], maximal-length LFSRs and their taps
can be ound. The LFSR used in this thesis is based upon tlat application note .

The initial value in a LFSR is called seed. Ths seed cannot be set to zero, since that is
a non-return state (as stated in the previous paragraph). Once the LFSR has gone
through all possible states, i.e. its period, the seed will appear again, and the whole

sequence will be repeated.
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Once the uniform-distributed random number generation has been solved using a
LFSR, the next problem to address is the normaldistributed random number
generation. Some hardware implementations have been proposed in the literature, for
example in [4]. In this particular example, the Box-Muller method is used in order to
generate the random samples. Complex mathematical operations, such as natural
logarithms and square roots, are performed to obtain two different normal -distributed
samples from two different uniform -distributed values. As a result, many resources
are necesary to implement this solution .

In this thesis, an alternative solution is presented. This solution is based upon the
central limit theorem and the outcome is a very simple architecture. In probability
theory, the central limit theorem states that, if some conditions are met, the arithmetic
average of a sufficiently large set of different independent random variables , eachof
them with known mean and standard deviation values, will be approximately
normally distributed. A slight modification of this statement can be expressed as
follows:

LX) QY
X0 EOWED

The random distributions ... can be arbitrarily chosen. Since the LFSR will produce a
uniform -distributed random variable at its output port, it seems reasonable tochoose
uniform distributions. A uniform distribution in the interval  ¢¥to has the probability

density function that is shown in Fig. 1l .4.

p(x) 4

—_ _— —p

@ w X
Fig. 1ll.4. Uniform distribution probability density function

Moreover, the mean and the standard deviation can be computed using the following
equations:

XY G
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It is possible then to selecté p ¢in order to save some computations, because the
square roots disappear in the expression of the central limit theorem.

X0 pQWMP Q0 90d O &

Since twelve different uniform -distributed variables have to be added, a new problem
arises: how to perform this mathematical operation.

9 Parallel solution: using twelve different LFSRs and adding their output
values. This solution is not feasible due to excessive resource consumption.

1 Serial solution: using only one LFSR and registering twelve output values.
Once the values have been registered, the addition is carried out. This
solution is better than the previous one, but normal -distributed samples have
a latency of twelve clock cycles.

1 Correlated solution: this was the first proposal that reduced the latency to one
clock cycle. However, it is not a good alternative, because the output values
cannot be considered white noise, since they are correlated. The architecture
used one LFSR and twelve different accumulators, each with an increasing
delay of a clock cycle, as can be seen irFig. 111.5.

LFSR| 0| 1| 2|34 |5|6|7|8|9]|10(11|12|13|¢
Accl | O
Acc2
Acc3
é

Fig. 111.5. Correlated random number generation scheme (source of correlation has been highlighted)
All these solutions were discarded in the design stage because of the aforementioned
reasons

The proposed solution uses only a large LFSR and twelve adders.In the LFSR, the
constraint © @1 p &, where n is the size in bits of the uniform variables that are
added, has to be met. This condition is expressed graphically in Fig. Il .6.

minimum tap

LFSR

size-1 0

Fig. 1l1.6. Normatdistributed random number generatmoposal
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With this structure, twelve different independent and identically distributed  random
numbers can be generated in only one clock cycle.

The final implementation consists of a maximal -length 111-bit LFSR, whose taps are
111 and 101.The VHDL module symbol is shown in Fig. 1ll.7, and it has some
parameters that are configurable.

OUTPUT _BITS
uniform
INT_PART+DEC_PART+1
normal
clk normal_valid

reset

Fig. 1ll.7. Random number generator symbol

SEED: the initial value of the 111-bit LFSR.

MEAN: mean value of the normal distribution.
STD_DEV: standard deviation of the normal distribution.
INT_PART: integer part size in bits.

DEC_PART: decimal part size in bits.

=A =4 =4 -4 4 =

OUTPUT_BITS: uniform output size in bits.

The size of the twelve uniform -distributed numbers is DEC_PART. This size, along
with the uniform output size appears in Fig. Il1.8. This architecture is compliant with
the tap requirement, sincep OO 6 Y'Y Q) w@ p MO AR .

DEC_PART

110 100 0

OUTPUT_BITS

Fig. Il .8.LFSR architecture
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Given that the output values are not one-bit-sized, the LFSR operation has suffered
some small variations that are shown in Fig. 111.9.

v

110 100

|
|
|
DEC_PART)|

O
o I

110 100

Fig. 111.9. LFSR operation

The random number generator module provides three different outputs.

1 uniform : uniform -distributed number with a resolution of OUTPUT_BITS
bits. It is an unsigned integer that represents a real number in the interval
Tip .
f normal : normal-distributed number & 0 0 ‘06 BY"Y®@ O cwith a resolution
of INT_PART+DEC_PART+1bi t s . It is a signed (2086s compl

codes a fixed-point number with INT_PART bits representing the integer part
and DEC_PART bits representing the decimal part. The extra bit is used to
code the sign.

1 normal_valid : control signal. It is one if the normal output represents a valid
sample and zero if it does not. This signal has been included in the design in
order to make it compatible with the other proposed random number
generators (in which the latency was over one clock cycle), even though its
value will always be one, since the latency of the proposed design is only one
clock cycle.

The effective numeric values of the signals in this module, as well as their
characteristics (i.e. attributes) are shown in Table Il .1.

Name Mode | Attributes | Min imum Maximum Increment
clk in rising 0 1 -
reset in high 0 1 -
uniform out unsigned 0 q
normal out signed C - q q
normal_valid out - 0 1 -

Tablelll .1. RNG signal characteristics
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[11.2 FitnessCalculation

Weight calculation is a very important stage in particle filtering, and fithess calculation
plays a similar role in evolutionary computation. In this thesis, these two operations
have been combined into one single unit. The fitness calculation unit obtains the
fitness, i.e. the weight, of any particle.

Yyeight calculation

I:l"-l T T T T
035k ........ ........ ......... ........ ....... ........ ........ .........
1] . ........ ........ ....... ......... ........ ........ .........
025k ........ ......... ......... N ....... ] ........ ........ .........

XU N O O T OO W
5 . o ........ . ........ .- ........ , ........ ........ ........ .........

= S U
D15_iltﬂf$ia|l£_ ........ ........ ........ ........ ........ ........ .........
01k ........ ........ ........ ........ ........ ........ .........
Oosk------ ........ ........ ........ ......... ......... ........ ........ .........

: : Aétual measurement : : :

0 i i ! i 1 i i
5 -4 -3 -2 -1 0 1 2 3 4 5

2real

Fig. 111.10. Fitness graphicalculation

A simple example on how to compute the weight of a particle has been provided in

Fig. II1.10. The measurement noisestandard deviation is used to generate a normal
distribution whose mean value isthe predicted measurement, which is obtained after
applying the measurement model to the particle current state . The particle weight is

then calculated asthe probability of obtaining the actual measurement in that normal
distribution.

Since the proposed measurement model provides two-element vectors, the normal
distribution around the mean values has two dimensions, i.e. it is multivariate.

. ‘ oo : woom
0 B30 ‘ X 00
Hn H A E " "
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In the previous expressions, it is possible to see that the mean values aré a wand

‘ & &) which are the predicted measurements, i.e. the expected measurement
values, obtained from each particle after applying the measurement model to the
population (oi represents thepredicted state of the particlei at time k). The covariance
matrix  has constant values, and the state variables are considered independent i.e.
uncorrelated. Therefore, the covariance,, T

In order to compute the probability of a given state defined by its x -axis and y-axis
state variables x and y, the following formula is used:

5 20 2
e~ p o)
QG ——m °
¢33 9 Op
In the previous equation, * and * are the mean values of xaxis and y-axis state
variables respectively;,, and, are the standard deviations of x-axis and y-axis state
variables respectively; " is the correlation between x-axis and y-axis state variables.

Taking into account the aforementioned condition of uncorrelated state variables, i.e.
11, the equation is reduced to:

p :D—O
¢33 3

Implementing a hardware module in order to perform this operation is almost
impossible, since it is very complex. Therefore, another approach has been used: lis
module has been implemented as a LookUp Table (LUT), i.e. an array that replaces
complex computations with array indexing operations.

"Qoh

Before explaining how the LUT is generated, the hardware module architecture will
be presented. The VHDL module symbol is shown i n Fig. 1l1.11, and it has some
parameters that are configurable. Note that it is a combinational logic block, and
therefore it has no clock input. Moreover, it has no reset port either.

INT_PART+DEC_PART+1 OUTPUT_BITS
—+4— X p_norm }—4—

INT_PART+DEC_PART+1
—/— x_mean
INT_PART+DEC_PART+1
+ y
INT_PART+DEC_PART+1
—— y_mean

Fig. 1ll.11. Fitnesscalculationsymbol
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1 INT_PART: input integer part size in bits.
1 DEC_PART:input decimal part size in bits.
1 OUTPUT_BITS: output size in bits, i.e. fithess/weight resolution.
1 MEAN_X: x -axis state variable mean value.
1 STD_DEV_X: xaxis state variable standard deviation.
1 MEAN_Y: y -axis state variable mean value.
1 STD_DEV._Y: y-axis state variable standard deviation.
1 VALUES: number of divisions in a single axis. This detgrmines the resolution
of the LUT, whose total size can be computed asw 6 0 YO"Y
1 EXT_MEAN: selects whether the mean values are defined by the generic

parameters or by the external signals.

The look-up table is generated during the synthesis process, using the computational
resources available in the computer. The LUT values are calculated as reanumbers
and then are truncated in order to represent then in integer precision. When the system
is running, particle fithess values are obtained using the LUT and zero-order
interpolation. The VHDL coding of the look -up table generation is shown in both Fig.
lll.12and Fig. 111.13.

(..r)
architecture rtt  of normal_eval s
Type definitions
type pdf is array (VALUES* 2-1 downto 0) of
std_logic_vector (OUTPUT_BITS 1 downto 0);

Function definitions
impure function generate_pdf return  pdf is

()
end generate_pdf

Constant definitions
constant  pdf_values : pdf := generate_pdf

begin
(..)

Fig. III.12. LUT generation in VHDL coding
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-- Function definitions
impure  function generate_pdf return  pdf is

--  Constants

constant  min ©oreal = ;

constant  max :real = real (2* INT_PART
constant  inc : real := (max min)/ real (VALUES;
constant mean_x : real = ;

constant sigma_x : real := real (STD_DEV_X;
constant mean_y : real = ;

constant sigma_y : real := real (STD_DEV_Y;
- Variables

variable pdf_aux : pdf;

variable calc :oreal = ;

variable norm ©oreal = ;

variable point x : real = min;

variable point.y : real = min;

begin

- Calculate normalizing constant
norm := I( *MATH_PF sigma_x *sigma_y )* exp (- / *((( mean_x-
mean_x)** 2)/( sigma_x ** 2) + (( mean_y- mean_y)** 2)/( sigma_y ** 2)));

--  Generate LUT with PDF
x_loop :
for i in to VALUES 1 loop

y_loop :
for j in to VALUES 1 loop

-- Compute Probability Density Function
calc := I( *MATH_PFsigma_x *sigma_y )* exp (-
/ *((( point_x -mean_x)** 2)/( sigma_x ** 2) + (( pointy -
mean_y)** 2)I( sigma_y ** 2)));
-- Store value
pdf_aux (i*VALUESj) =
std_logic_vector (to_unsigned (integer (calc *( **( OUTPUT_BITS -
)/ norm), OUTPUT_BITY);

-- Increment point_y
point.y = point.y + inc ;

end loop ;

- Increment point_x

point_x = point_.x + inc ;
--  Reset point_y
point.y = min;

end loop ;

-~ Return solution
return  pdf_aux ;

end generate_pdf ;

Fig. 111.13. Normal distributiorprobability density function generation in VHDL
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In order to reduce resource utilization rates and maximize the LUT resolution , some
enhancements have been implemented inthis unit :

1 Since 99.7% of the normal distributed values can be found within three
standard deviations of the mean, it is possible to define the effective size as
the minimum bit size that allows the representation of the number ¢, ,
where ,, G QA YDOBRY YO . The LUT is built for that
particular bit s ize instead of the whole dynamic range defined by INT_PART.
Any value out of the effective size range has a zero value at the output port.

1 Considering that, the resulting multivariate normal distribution is symmetric.
Therefore, it is only necessary to stae the values in one of the four quadrants
(rectangular coordinate system).

A
y ¢ - q

Fig. 1l1.14. LUT enhancements

These modifications are shown in Fig. 1ll1.14. The green dotted line represents the limit
(o0) . The blue dots represent the calculated values in the LUT. Any indexed point
within the blue area would directly access the LUT, whereas if the value is within the
red zone, the output will always be zero.

LUT access (blue area)s carried out following these equations:
NMQ —Oow w
' 0Q wo O YAV QQ
NMQ —ow w
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The effective numeric values of the signals in this module, as well as their
characteristics (i.e. attributes) are shown in Table Il .2.

Name | Mode | Attributes | Minimum Maximum Increment
X in signed q q q . q
X_mean in signed C C C . G
y in sighed C C C . G
y_mean in signed q q q . q
p_norm out unsigned 0 q : 1

Tablelll .2. Fitness calculatiorsignal characteristics

[11.3 Particle Registers

Particle states have to be storedduring the filter ing operation. Therefore, it is
necessary to introduce memory elements in the design. How can these memory
elements be implemented?

1 Registers: flip-flops store the state variables. One of the most important
advantages this approach has isthat the memory access can be done in parallel
(i.e. more than one particle state can be reached in one clock cycle), even
though it can also be sequential (i.e. one particle state per clock cycle).
However, resource utilization rates are high, thus havin g large area
overheads.

T RAM memory: random access memories can be used to store particle states.
Data access can only be performed in a sequential manner (if the RAM
memory has only one port), but the area overhead is smaller compared with
the previous alternative.

In the end, a RAM implementation was chosen, mainly due to the fact that RAM
memories are easy to implement as BRAM (Block RAM) in Xilinx FPGAs. Therefore,
this is the only module in the whole system that is technology dependent. BRAM
inference in Xilinx tools requires specific syntactic constructions, especially when
trying to describe dual port RAMs with two read/write ports in VHDL.

VHDL coding of the state register module has been provided in both Fig. 111.15 (entity
definitions) and Fig. 111.16 (architecture description). Note that in the entity, an

attribute is defined in order to tell the synthesis tool that the module has to be inferred

as a block RAM (in case it is not done autamatically). Also, note that in the architecture

description a shared variable is used. This is, generally speaking, a type of variable
that cannot be synthesized. However, the VHDL code has to be written exactly like
that so that the synthesis tool detectsthat a block RAM is being defined. This is the
reason why this module is technology dependent (it depends on Xilinx FPGAs and

synthesis tool, XST).
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-- Particle state memory
-- Read- first Dual Port RAM
-- Xilinx FPGA implementation target

library ieee ;
use ieee .std_logic_1164 .all ;
use ieee . numeric_std .all ;

library work ;
use work. all ;

entity  state_register is
generic
(

--  Number of elements

ELEMENTS : natural : ;
-- Address port width in bits
ADDR_WIDTH : natural = ;

-- Data resolution in bits

DATA _WIDTH : natural =

)i

port

(
--  CLK signals
clk_a : in std_logic
clk b . in std_logic
--  Control signals
en_a . in std_logic
en_b :in std_logic
we_a . in std_logic
we_b : in std_logic ;

-- Address ports

addr_a : in std_logic_vector (ADDR_WIDTH1 downto 0);
addr b : in std logic_vector (ADDR_WIDTH1 downto 0);
-~ Input data ports

din_a : in std_logic_vector (DATA_WIDTH1 downto 0);
din_b : in std_logic_vector (DATA_WIDTH1 downto 0);
--  Output data ports

dout_a : out std_logic_vector (DATA_WIDTH1 downto 0);
dout_b : out std_logic_vector (DATA_WIDTH1 downto 0)

)i

--  BRAM definitions

attribute ram_style : string ;

attribute ram_style  of state_register . entity is "block" ;

end state_register ;

Fig. 1ll.15. State register VHDL entity
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architecture rtl  of state_register is

--  Type definitions

type RAMis array (ELEMENTS1 downto 0) of
std_logic_vector (DATA_WIDTH1 downto 0);

-- Shared variable definitions (TECHNOLOGY DEPENDENT)

shared variable state : RAM:= (others => (others => "'0"));
begin

-- Particle state storage (Dual port RAM): PORTA
port_ a : process (clk_a )
-- Variable definitions

variable index_a : integer range O to ELEMENTS1 := 0;
begin
if clk_a event and ck_a = "'1" then
-- Enable memory
if en_a ="'1" then
-- Index calculation
index_a := to_integer (unsigned (addr_a ));

-- Read operation PORTA
dout_a <= state (index_a );
--  Write operation PORTA

if we_a ="'1" then
state (index_a ) := din_a ;
end if ;
end if ;
end if ;

end process ;

-- Particle state storage (Dual port RAM): PORTB
port b : process (clk_b )
-- Variable definitions

variable index_ b : integer range O to ELEMENTS1 := 0;
begin
if clk b event and clk b = "'1" then
--  Enable memory
if en_b ="'1" then
-- Index calculation
index_b := to_integer (unsigned (addr_b ));

-- Read operation PORTA
dout_b <= state (index_b );
--  Write operation PORTA
if we b ="'1" then
state (index_b ) := din_b
end if ;
end if ;
end if ;
end process ;

end rtl ;

Fig. 111.16. State register VHDL architecture

Hardware Based Particle Filter with Evolutionary Resampling Stage



54 Evolutionary Particle Filter

The VHDL module symbol is shown in Fig. Ill.17, and it has some parameters that are
configurable.

DATA_WIDTH DATA_WIDTH
—+#— din_a dout a |—+4—
DATA_WIDTH DATA_WIDTH
—#— din_b dout b +—+#—

ADDR_WIDTH
addr_a
ADDR_WIDTH
addr_b
en_a
en_b
we_a
we_b
clk_a
C —

Fig. 111.17. State register symbol

1 ELEMENTS: number of available memory elements.
91 ADDR_WIDTH: address size in bhits.
1 DATA_WIDTH: data size in bits.

Since each particle has four different state variables plus its weight/fitness value, a
higher-level module has been created using five instances of the state register. Thus,
all particle information is stored within a single VHDL module.

There are two particle registers in the Evolutionary Particle Filter, because at the end
of each generation, during the survivor selection process, it is necessary to store a copy
of each particle so as not to overwrite existing information. This will be explained with
further details in forthcoming sections of this chapter.

[11.4 Process Model

Importance sampling is carried out within this unit. = As stated in previous sections, the
importance sampling function is the process model. Particle state is updated from a
time step to the following one using the dynamic model presented in the introductory
section of this chapter. This update process generates a new set gbredi cted states (as
in the prediction stage of the Kalman filter).

s 0 &I Og
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In order to implement this matrix -multiplication dynamic model in hardware, there
were two main different alternatives:

1 Parallel implementation: all four state variables are updated in the same clock
cycle, using 16 multipliers.

1 Resource sharing implementation: using multiplexers and only four
multipliers, but consuming more clock cycles.

The target platform is a XUPV5 board, which features a Xilinx Virtex -5 XC5VLX110T
FPGA. This FPGA has a limited number of hardware multiplier re sources, namely,
only 64 DSP slices. Hencegvery module with multiplications in this thesis has been
implemented using the second approach, i.e. sharing hardware resources.

The process model module architecture has been optimized in order to reduce the
maximum delay, i.e. to increase the maximum allowable frequency, and has been
presented in Fig. 111.18. In addition, the finite state machine that controls data
transitions and generates control signals has been included inFig. I1.19.

L L
(WY VY e W e U

—® ® T® ®

O

—Q
+
—®

c Cy & C

Fig. 111.18. Process moddiardware architecture
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model start = 0’
model end <= ‘0’

model start = model_start = ‘0’
model end <= ‘0’ model end <= ‘1’

/ ‘\@

model start = ‘17
rand valid = ‘0
: X_up :. last
\\ // \\ /
-~ S
rand valid = ‘'l rand valid = ‘1’
x <= aux vy <= aux
T "\\ e
/ \ /
Lo e |
rand wvalid =
C) O rand valid = ‘0
‘\
vX_up
/
rand valid = ‘1’ rand valid = ‘1
Yy <= aux O vx <= aux
rand_valid = ‘0’

Fig. 111.19. Process model control FSM

The FSM works as follows: first, it remains waiting at rst state. When a rising edge
appears in the control signal model_startthe FSM goes thraigh all updating states, i.e.
X_up, y_up, vx_up, and vy_up. To change from one state variable to the next one that
has to be updated, it is absolutely necessary that a valid normal-distributed random
number is available. Therefore, transitions between states depend on the signal
randn_validbeing high. If this condition is not satisfied, the FSM stops and remains in
the same state.There is another extra state, calledlast, in which the FSM stops unless
the input control signal model_staris low. This prevents the system from updating the
same particle state twice instead ofonly once. In the final state transition, the output
control signal model_ends set to high only one clock cycle.

One of the most important disadvantages of this modu le is the latency. Since the state
variable update process dependson valid random samples, this latency can have a
huge impact in overall performance if it is not taken into account . In this thesis it has
been, since the random number generator has no laency betweennormal samples.
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The VHDL module symbol is shown in Fig. 111.20, and it has some parameters that are
configurable.

INT_PART+DEC_PART+1 INT_PART+DEC_PART+1
—x— x 1 X —+—
INT_PART+DEC_PART+1 INT_PART+DEC_PART+1
—Nx— y_1 y ——
INT_PART+DEC_PART+1 INT_PART+DEC_PART+1
vx_1 VX
INT_PART+DEC_PART+1 B INT_PART+DEC_PART+1
—~—{ w_1 v ——

INT_PART+DEC_PART+1
—x— randn
randn_valid
model_start
model_end
clk
reset

Fig. 111.20. Process model symbol

1 INT_PART: integer part size in bits.
i DEC_PART: decimal part size in bits.

1 SIGMA_RATIO: ratio between the standard deviation in position and in
velocity.

I T:sampling time in the dynamic model.

The dynamic matrix coefficients and the number of bits for the right shift operation
are computed during the synthesis process (following the same procedure used in the
fitness calculation unit). VHDL coding is shown in Fig. 1ll.21and in Fig. IIl.22

Get shift value from sigma ratio

function get ratio (ratio : real ) return natural is
Variable definitions
variable ratio_log : natural
begin
Compute value
ratio_log = integer (log2 (ratio ) + );

Return value
return  ratio_log
end function

Fig. 1II.21. Bit shift computation in VHDL
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-~ Type definitions
type dyn_matrix is array (3 downto O, downto 0) of
std_logic_vector (INT_PART+DEC_PAR¥1- 1 downto 0);

--  Function definitions

-~ Obtain std_logic_vector matrix from real matrix

function generate_matrix (T : real ) return dyn_matrix is
-- Constant definitions

constant a : dyn_matrix_real =

(

- Return value
return  a_int ;
end function ;

type dyn_matrix_real is array (3 downto O, downto 0) of

real ;

(1.0, T )
(0.0, , , I,
( 1 1 , )r
(0.0, , ; )
)i
variable a_int @ dyn_matrix ;
begin
for i in downto loop
for j in downto loop
a_int (i,j) =
std_logic_vector (to_signed (integer (real (2* DEC_PARY* a(i,j)), a.nt (i,j)"
length));
end loop ;
end loop ;

Fig. 111.22. Dynamic matrix generation in VHDL

The effective numeric values of the signals in this module, as well as their

characteristics (i.e. attributes) are shown in Table Il .3.

Name Mode | Attributes | Minimum Maximum Increment

clk in rising 0 1 -
reset in high 0 1 -

x_ 1 in signed G q G G

y 1 in signed G G G G

vx_1 in signed q C q q

vy 1 in signed G C C C

randn in signed ¢ - G G G
randn_valid in - 0 1 -
model_start in - 0 1 -

X out signed G G G G

y out signed C C q q

VX out signed G C G G

vy out signed G C G G
model_end out - 0 1 -

Tablelll .3. Process modeadignal characteristics
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1.5 Crossover Unit

This hardware module performs the recombination operation in the evolutionary
resampling stage. Crossover equations have been provided as a reminder.

w | P I w

w | w p I w
The implementation guidelines are exactly the same that were discussed in the
previous section. In order to avoid excessive resource consumption rates, the module
has been described as a resourcesharing architecture. The hardware architecture can
be seen inFig. 1l1.23. Note that the same multiplexed inputs (¢ fjand € 1) are used to

generate two children (& 6 .¢and ¢ 6 .6). The control FSM for this particular module
appears in Fig. 111.24.

O DVDE o 6o

— N —

Fig. II1.23. Crossover unit hardware architecture
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cross_start = ‘0’
cross_valid <= ‘0’

choss_end <= 0’

(cross_start = ‘1'}&(rand < pc) // (cross_start = ‘l’)&(rand >= pc)

cross_valid <= 0’ cross_valid <= ‘0’
cross_end <= ‘0’ cross_end <= ‘0

VA K/
\ X_up “

cross_start = ‘1’
Y cross _start ‘0’
/ cross end <= ‘1’
X a <= aux a vy a <= aux a
x b <= aux b vy b <= aux b
- - _ cross_valid <= ‘0’
- - o
,/ \\\ / /
\ { Y
\\ y_up ’JI | owe |
\ / :
~ // T \ /

o // \ A
¥y a <= aux a { \ vX a <= aux a
— — | vxX_up | — —
Yy b <= aux b - vx_b <= aux b

Fig. lll.24. Crossover unit control FSM

This module operates similarly to the process model unit. Unless the input control
signal, in this casecross_stargoes high, the module does nothing. Once a rising edge
has been detected in that control signal, there are two possible state transitions. If the
uniform -distributed random number which is drawn is greater than the fixed
crossover probability threshold, i.e. 1] , the system goes to the statdast Otherwise, the
next state is x_up, and clock cycle after clock cycle, the system performs the
recombination of the four state variables. Once this has been finished, the system will
step to the statelast, setting the control signal cross_validto high. Independently on
how the last state is reached, the system will stop until the input control signal goes
low. Only then will the system go to the initial state, setting the other output control
signal, cross_endto high for only one clock cycle. Once the system is inrst state, both
output control signals are set to low. These two outgoing control signals let the rest of
the system know when the recombination has finished and whether there has been
offspring generation or not. Refer to the following sections for further information.

Althoug h the system takes more than one clock cycle to finish the recombination
algorithm, the latency is fixed, since it does not depend on the random number
generation process (it is assumed that uniform random numbers are generated with a
LFSR, thus having onesample per clock cycle).
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The VHDL module symbol is shown in Fig. 11l .25, and it has some parameters that are
configurable.

INT_PART+DEC_PART+1 INT_PART+DEC_PART+1
—— x 1 x_a |—~+—
INT_PART+DEC_PART+1 INT_PART+DEC_PART+1
+ y_l y a +
INT_PART+DEC_PART+1 INT_PART+DEC_PART+1
vx_1 vX_a
INT_PART+DEC_PART+1 INT_PART+DEC_PART+1
R — vy 1 vy a e
INT_PART+DEC_PART+1 INT_PART+DEC_PART+1
—— x 2 x_b —F—
INT_PART+DEC_PART+1 INT_PART+DEC_PART+1

y 2 y b —F—
INT_PART+DEC_PART+1 INT_PART+DEC_PART+1
—N— vx_2 vx_b —F—
INT_PART+DEC_PART+1 INT_PART+DEC_PART+1
— ] vy 2 vy_b -
DEC_PART
—X—{ rand
cross_start
cross_valid
clk cross_end

reset

Fig. 111.25. Crossover unit symbol

1 INT_PART: integer part size in bits.
1 DEC_PART: decimal part size in bits.
1 P_CROSS: crossover probabilityr .

The generic parameter P_CROSS is defined as a realumber to represent a red value
ranging from 0.0 to 1.0. However, real numbers cannot be synthesized. In order to
overcome this problem, the crossover probability is computed (again) during the
synthesis process, expressing it with the resolution given by the other generic
parameters, specifically DEC_PART. This conversion can be seen irFig. 111.26.

-- Constant definitions
constant pc : integer = integer (real (2* DEC_PARY* P_CROS$H

Fig. 111.26. Real to integer conversion in crossover probability threshold
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The effective numeric values of the signals in this module, as well as their
characteristics (i.e. attributes) are shown in Table lll .4.

Name Mode | Attributes | Minimum M aximum Increment
clk in rising 0 1 -
reset in high 0 1 -
x_1 in signed ([ C - G . G
y 1 in signed q C q q
vx_1 in signed G G [« [«
vy 1 in signed q q G q
X_2 in signed < G G G
y 2 in signed G C G G
vx_2 in signed C G [« G
vy 2 in signed q ¢ G q
rand in unsigned 0 p G C
cross_start in - 0 1 -
X_a out signed < C G . G
y a out signed q C G : G
vX_a out signed G G [« : [«
vy_a out signed q q G : q
x_b out signed G C G : G
y_ b out signed G q G : G
vx_b out signed G G G . G
vy _b out signed ¢ - C G : G
cross_valid out - 0 1 -
cross_end out - 0 1 -

Tablelll .4. Crossover unisignal characteristics

[11.6 Mutation Unit

The implementation of the second genetic operatorin the evolutionary resampling
stagewill be explained in this section. Since there was not only one but two different
operations (namely, random placement and local search), in this module there are two
different data paths.

The first data path generatesa child using random placement; therefore, the following
equation has been implemented in hardware:

O I Dw W
The second data path creates a child using local placement, i.e. placing this child in a

close environment (in the state space) of the parent. This operation is represented as
the following equation:
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Fig. II1.27. Mutation unit hardwarerchitecture

In order to perform both operations, the architecture that is shown in Fig. 1l1.27 has
been proposed. By taking a look at this figure, it is possible to see the two different
data paths that have been explained in the previous paragraphs. The random
placement data path is the one on the left side, whereas the local search data path is
located on the right side. The control logic decides whether to use the random
placement child (& 6 . Hor the local search one (O 6 @ Y with a control signal (& € Q.Q

The control FSM can be seen inFig. 111.28. It is more complex than the control FSMs
from both process model and crossover units. However, it shares common features
with them. For instance, the capability of deciding whether the child is valid or not,
based upon a uniform random number comparison with a fixed threshold (exactly the
same that happened in the crossover module), or the need for valid normal random
numbers (as in the process model module).

Note that, although the control |ogic is by far more complex than in the
aforementioned modules, the data logic is simpler, since only one multiplier is needed,
and only in one of the paths (random placement of the particle in the state space).
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mut_start = 0’
mut wvalid <= ‘0’

m mut_end <= ‘0’

(mut_start = '1l’)&(rand < pm)} . (mut_start = ‘17)&(rand >= pm)
mode <= ‘1’ when ({(rand < mut_type) “/.“/ N mode <= ‘1’ when (rand < mut_type)
mode <= ‘0’ when (rand >= mut_type) [ rst | mode <= ‘0’ when (rand >= mut_type)

mut_valid <= ‘0’ R 1o mut_valid <= ‘0’
mat_end <= ‘0’ \\\\7 /// - mut_end <= 0’
/’ \\\\ E— /// -
(mode = 0") } f
& x_up 1 ‘ last mut_start = ‘1’
(randn_valid = ‘0’) ! / mut_start = ‘0’ \
- \ , mut_end <= ‘1
(mode = '1’}| (randn_valid ;_‘1') (mgaé = ‘1’) | (randn_valid = ‘1’)
x c <= aux_rp when (mode = ‘17) vy_c <= aux_rp when (mode = ‘1’)
% ¢ <= aux ls when (mode =_‘0') vy _c <= aux ls when (mode = ‘07)
- - T . mut_valid <= ‘1’
\ N\
(mode = *07) y_up } L o

&

(randn_wvalid =

{ \
(mode = *1'}| (randn valid N v up |
! r

y_c <= aux_rp when (mode = ‘1 /," (mode = 'l')| (randn_valid = '1')
y_c <= aux_ls when (mode = ‘0 N e vx_c <= aux_rp when (mode = ‘1’)
T vx_c <= aux_ls when (mcde = ‘07)

(mode = ‘0’)&(randn valid = ‘0')
Fig. 111.28. Mutation unit control FSM

The control strategy in this module can be analyzed as follows. As in the two previous
modules, the mutation unit waits for a rising edge in the input control signal (in this
case, it is the signalmut_starf). If this condition is met, a uniform random number is
drawn. Two possibilities can arise: on the one hand, the random number is less than
the threshold; on the other hand, it is greater than the threshold. If it is greater than
the threshold, the procedure is the same as in the crossover unit: the system goes to
the state last However, if the random number is less than the threshold, the internal
control signal modeis set to high or low depending on the comparison of that random
number and a second threshold. This comparison decides the type of mutation that
will be performed on the parent. Then, the state machine starts generating each state
variable offspring. Note that if the current mode is local search, i.e. & € Q QaeTthe
system will h ave to wait for a valid normal -distributed random number to be able to
get to the next state. On the contrary, if the mode is random placement, i.e.& € QQeaep
the system does not have to wait for anything, and therefore the transition takes only
one clock cycle to happen. Independently of the current mode, once the system has
generated valid offspring for each state variable, the control signal mut_valid is set to
high and the state lastis reached. When the input control signal goes low, the system
returns to the idle state, rst, setting the other control signal to high (one clock cycle).
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The VHDL module symbol is shown in Fig. 11129, and it has some parameters hat are
configurable.

INT_PART+DEC_PART+1 INT_PART+DEC_PART+1
—~— xp X ¢ F—+—
INT_PART+DEC_PART+1 INT_PART+DEC_PART+1
—~——vyop yc H—H—
INT_PART+DEC_PART+1 INT_PART+DEC_PART+1
VX_p VX_C
INT_PART+DEC_PART+1 INT_PART+DEC_PART+1
—x— w. p vw c 4

INT_PART+DEC_PART+1
—X— randn
DEC_PART
—<— rand
randn_valid
mut_start
mut_valid
clk mut_end —
reset

Fig. 111.29. Mutation unit symbol
INT_PART: integer part size in bits.
DEC_PART:decimal part size in bits.

SIGMA_RATIO: standard deviation ratio i

= =4 =4 N

P_MUT: mutation probability 1 .
1 MUT_RATIO: mutation ratio i

Following the same reasoning process that in the previous section, the probability
thresholds are computed during the synthesis process, using the expressions provided
in Fig. 111.30. In addition to that, since there are normal random numbers involved,
the number of bits that suffer the right shift operation is computed the same way it
was calculated in the process model unit (seeFig. 1l1.21).

Constant definitions
constant  pm . integer
constant mut_type : integer

integer (real (2* DEC_PARYT* P_MUT;
integer (real (2* DEC_PARY* P_MUTMUT_RATIO;

Fig. 111.30. Real to integer conversion in mutation unit thresholds
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The effective numeric values of the signals in this module, as well as their
characteristics (i.e. attributes) are shown in Table lll .5.

Name Mode | Attributes | Minimum Maximum Increment
clk in rising 0 1 -
reset in high 0 1 -
X_p in signed ¢ - ¢ - G G
y_p in signed S S S S
vX_p in signed G C G G
vy _p in signed q q G G
randn in signhed ¢ - G G G
randn_valid in - 0 1 -
rand in unsigned 0 p G q
mut_start in - 0 1 -
X_C out signed G C G G
y_C out signed q C q q
VX_C out signed < C G G
vy _C out signed ¢ - C G G
mut_valid out - 0 1 -
mut_end out - 0 1 -

Tablelll .5. Mutation unitsignal characteristics
[11.7 Dividers

At the very end of the particle filtering process, an estimation of the system state is
generated. In order to compute each state variable estimated value, the following
equation is used:

[N 0

In this equation, @ represents the state variables of the particlei at time k, whereas0
are the normalized weights of those particles. In order to avoid unnecessary
computations of normalized values, this process is carried out at the estimation stage
of the Evolutionary Particle Filter.

. . B "Q3n

w 0 dw B

This last equation represents the new problem that needs to be solved: a division. Note
that each normalized weight has been expressed as) 5 where "Qrepresents the
output values of the fitness calculation module. After searching through the literature,

the division algorithm that has been selected and implemented is the radix -2 non-
restoring division algorithm that was found in [5].
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Radix-2 non restoring division algorithm can be explained as follows. First, consider
the operation we are trying to solve: the division.

Eo0a NNQei
The last formula represents a common division, where num represents the numerator,
denis the denominator, qis the quotient and r is the remainder.

The hardware architecture that has been used can be seen ifrig. 111.31. It requires one
register to store the denominator, which is called inc, a shift register, which is named
op_register and an adder/substractor.

LOW(op_reQ)[0]

y
— HIGH | LOW op_reg
< shift
] | inc

Fig. 111.31. Divider hardware architecture

Having said that, let us focus on the algorithm itself, which has been illustrated in the
following figure ( Fig. 111.32).

LOWop_reg ) = num
HIGH(op_reg ) =
inc = den;

for (int i = 0; i < N_BITS; i++)
shift_left (op_reg ,

);
(HIGH(op_reg ) < 0) ?
(HIGH(op_reg ) < 0) ?

(HIGH(op_reg ) +=inc ) : (HIGH(op_reg ) -
(LOWop_reg )[ 0] = 0) : (LOWop_reg ) 0]

q = LOWop_reg );
(HIGH(op_reg ) < 0) ? (r = HIGH(op_reg ) + inc ) : (r = HIGH(op_reg));

Fig. 111.32. Radix2 nonrestoring division algorithm

This algorithm works well if both  num and den are unsigned integers, but some
modifications have to be made in order to adapt the algorithm to signed integers (the

Evolutionary Particle Filter state variables are signed integer, therefore this is
mandatory). These changes have been included within the system control FSM, which
can be seeninFig. 111.33. The signs are computed before the aforementioned algorithm
starts working with the absolute values of the operands. Once the algorithm has
finished its execution, the quotient and remainder signs are modified with the

previous knowledge of the operand signs.
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div_start = ‘0’
div_start = 1/ div end <= ‘0’
div_end <= ‘0’ -
LOAD HIGH (op_regq)
LOADngg (if:creg) // \ div_start = ‘0’
/ div_end <= ‘1’

COMPUTE Quotient sign \ RECISTER i &
COMPUTE Remainder sign Quo }en
| \ REGISTER Remainder
\ \
division ! | last

cnt /= N BITS-1 / div_start = ‘1’

Radix-2 non-restoring

division algorithm ent = N_BITS-1

Fig. 111.33. Divider control FSM

The finite state machine used to control the system has only three states. The first one
represents theidle mode of the divider unit. When there is a rising edge in the control
signal div_start, the signs of the quotient and the remainder are calculated, and the
input numbers are stored in its respective registers (inc, op_ref Then, the algorithm
computes the division while the FSM remains in the state division. This process takes
N_BITS cycles, being N_BITS the number of bits each operand has. Then, the system
goes to a waiting state until the input control signal goes low. At this moment, the
output control signal is set to high for one clock cycle, and both the quotient and the
remainder are registered as output values.

The VHDL module symbol is shown in Fig. 1l1.34, and it has some parameters that are
configurable.

N_BITS N_BITS
—~— num q
N_BITS N_BITS
—x—] den r
div_start
clk div_end
reset

Fig. 111.34. Divider symbol

1 N_BITS: data signal resolution in bits.
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The effective numeric values of the signals in this module, as well as their
characteristics (i.e. attributes) are shown in Table III .6.

Name Mode | Attributes | Minimum Maximum Increment
clk in rising 0 1 -
reset in high 0 1 -
num in signed G - G - p p
den in signed q - q - p p
div_start in - 0 1 -
q out signed q - G - p p
r out signed G - G - p p
div_end out - 0 1 -

Tablelll .6. Divider signal characteristics

[11.8 Additional Logic

In the previous section, the divider unit was explained. Nevertheless, how are the
inputs of that unit generated? Additional hardware resources used in this thesis will
be presented in this section.In particular, multiply and accumulate (MAC) units and
accumulators will be reviewed.

ol "QQo

@

Fig. 111.35. State variable MAQnit and fithess accumulator

In Fig. Il1.35, the hardware that has been implemented to perform the operations of

multiply and accumulate on the state variables and accumulate on the fitness is shown.
. . B "Qan

® v B Q

Therefore, the upper component performs the operation B "QJw , whereas the lower

component is in charge of computing B "Q Since these operations use registers, it is

important to select a particle number that makes the module feasible. Excessve area

overhead could be generated if this is not taken into account.
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[11.9 Process Schedulingnd System Control

Complex systems such as the Evolutionary Particle Filtering require large control
FSMs in order to work properly. In this last section, the control logic that connects and

rules the operating conditions is presented.

random_start <= ‘1’

random end = ‘0’
vt z new = ‘1’

random start <= ‘0’ 3

- z naw = ‘07 valid <= '1/

(z_new = '1') & (z_val = '0'} 7T walid <= 01f
valid <= 0/ 7 ‘—\ -
= 117 d | T
random_start < 1 | random_op | ) \\
' ] / 3
T T N S ! finish i div_end = ‘17
e ;| ; div_start <= '0’

./ N -
7 'y 5 <= x
z new = '0° [ .. | A P x -
— | wait_op random end = ‘1’ . . <=
— g ‘ S | L - ¥ ¥y aq
valid < 0 C ! random start <= ‘0’
. save start <= ‘17 I . _
(z new = 1’} “.__ £ save end = ‘1’ - ~. ﬁlv_end. = o
I save start <= ‘0’ / div_start <= '0
(z_val = ‘1) ‘ estimate_op
valid <= ‘0’ save end = '0' i :
save_start <= 0’ AN v

model_ctrl_start <= ‘17 %7 7
z_x_reg <= Z_X 7

BTeE Rt R model_op

\ ] save_end = '1°
A / T save start <= ‘0’
v / *, div_start <= ‘1’
mddel end = 17 i i
model ctrl <= ‘07 | save state h
model_end = ‘0’ save_start <= '1’ -

model ctrl start <= ‘'0'

accumulate end = ‘17
accumuilate start <= ‘0’
sava start <= ‘1’

ave_end = ‘1’
salre_start <= '0’ T
seleckion start <= ‘1‘_5/ \‘: accumulate end = ‘0’

{ ' accumulate start <= '0
| accumulate_op | —

save_end = 1’
save_start <= ‘0’
sort_start <= ‘1’

n_sort <= PARTICLES

sort_end = '0’

sort_start <= "0’ 3 ;
mut_ctrl_end = ‘1’ T 7 oo RN . /
mat_ctrl_start <= '0¢ Ve ™ / (selection end = *17)
7 'y f :

sort_start <= ‘1’ /_> ) selection_op i
n_sort <= PARTICLES+CHILDREN . sortop ‘-\ 7 (selection_mode = survivor selection)
T u A selection_start <= ‘0’
N, S i accumulate_start <= ‘1’
k - O selection mode = parent selection
1

: mutation_op sort end = °
n /" sort_s_tart <= ‘0’
e selection_start <= ‘1’

mut_ctrl_end = '0°
mut_ctrl_start <= ‘0’

selection end = ‘0’
selection_start <= ‘0’

(selection_end = ‘'1')
&

(selection mode = parent selection)
selection_start <= ‘0’
cross_ctrl start <= ‘1’

selection_mode = survivor selection

cress_ctrl_end = ‘1’
cross_ctrl_start <= 0
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Fig. II1.36. Process Scheduler

The main control is represented in Fig. 111.36. In this figure, some control signals have
been omitted for the sake of simplicity. However, all possible state transitions, as well

as their conditions have been included.
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Since the system § very complex, local control strategies have also been implemented.
There are eight different control submodules, each one with a specific functionality:

1 Initial particle random placement.
1 Process model control: interface with the process model unit.

1 Particle sort algorithm: bubble sort algorithm to sort particles according to
their fitness values. This algorithm is very slow with large population sizes,
and in future works might be revised in order to increase overall system
performance.

Selection algorithm: performs Stochastic Universal Sampling.
Crossover control: interface with the crossover unit.

Mutation control: interface with the mutation unit.

= =4 =4 =2

Accumulation: controls the MAC an accumulators, presented in the previous
section.

1 Save particle state stores intermediate particle states (after importance
sampling, between generations, etc.) for representation purposes.

The FSM in Fig. 111.36 generates the necessg control signals for the control
submodules, whereas more specific control signals (such as memory access signals)
are generated inside the control submodules. Since the hardware modules can operate
only with one particle (or two, in the case of the crosover unit), the control
submodules are in charge of requesting data from the particle registers and then
passing those data so that processing can be carried outFor the sake of brevity, these
control submodules, i.e. local FSMs, have not been included n this document.

In the Particle Registerssection of this chapter, some references were made to the fact
that at least two memories for each state variable. Thereare two obvious reasons for
this: on the one hand, the aforementioned overwriting problem when passing from
one generation to the next one. With the implemented control strategy, particle states
would suffer from data consistency errors were it not for the additional memories. On
the other hand, these additional memories are important because they store the
intermediate particle states. Moreover, since the particle registers are described as dual
port RAMSs, there is an extra interface available for data transactions. This advantage
will be used in one of the testing platforms. Refer to the following chapter for further
details on the usage of additional particle registers.

As far as this thesis is concerned, the process scheduling has been designed as
sequertial, i.e. each unit performs its function and then the next one, and so on.
Therefore, full parallelism has not been accomplished (e.g. process model, crossover
and mutation units processing data in parallel) . This will be documented in the future
lines sections of the following chapter.
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Resultsand Conclusions

I. Evolutionary Resampling Stage

Since the evolutionary resampling stage is one of the main contributions of this thesis,
in this section a thorough analysis of the algorithm itself will be presented.

In order to validate the evolutionary resampling algorithm, it has been implemented

in MATLAB. It is common to see validation examples in the literature in which the

univariate non -stationary growth model is used as the process model equation. This
is mainly due to the fact that it is highly non -linear, therefore making it suitable for
testing any estimation tool which handles this specific type of systems (i.e. non-linear
systems). Moreover, the measurement model is quadratic, thus conferring more
complexity and uncertainty to the filtering process.

P&

w 0 o XAl ggOQ p ]

, @
q — .
¢
1 x 0 mh, e x 0 mh,

With this model, different tests have been proposed and performed. First, the
Evolutionary Particle Filter was compared with the basic particle filter: the Bootstrap
Filter. The aim of this test was to evaluate whether the proposed algorithm
outperformed the Bootstrap Filter or not. The results of this test can be seen inboth
Fig. 1.1 and Fig. 1.2. In the first figure, the tracking performance is shown. Note that
both algorithm s provide accurate estimations. However, the Evolutionary Particle
Filter provides, generally speaking, less estimation errors (computed as mean square
errors), as it is shown in the second figure. In some time steps, espeially in those of
the beginning, the EPF estimation error has larger spikes than the Bootstrap Filter.
Nevertheless, the rest of the spikes are, in average, smaller.

Another important test was carried out in order to measure the robustness of the
system. Introducing large modifications in the dynamic evolution of the real system,
the Bootstrap Filter lost the target trajectory, never to return, whereas the EPF lost the
target and then returned to the real estimation value (since mutation operations
generated children in the environment of the real state, therefore evolving the
population to that state space region). The robustness of the system can be seen ifrig.
1.3, where from 0 ¢ 1o 0 T Tta linear model equation (@ ® X) is used
instead of the univariate non -stationary growth model. In a real-world situation, this
divergence from the theoreti cal model could be due to inaccurate modeling strategies,
i.e. the process model does not represent the actual behavior of the real system.
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Fig. 1.3. EPF vs. Bootstrap Filter: inaccurate process modeling

The last test that has been designed is focused on checking whether this resampling
strategy can be considered optimal, rather than suboptimal. If the resampling stage
algorithm is optimal, the sample impoverishment problem will be mitigated.
Moreover, the other main problem of particle filtering, i.e. particle degeneracy, should
not be present, since there is a resampling stage.

As in the previous tests, a comparison between the Bootstrap Filter and the proposed

Evolutionary Particle Filter has been made. The effects of suboptimal resampling

strategies, which have already been discussed in this thesis, are shown inFig. 1.4. The

resampling stage in the Bootstrap Filter decreases patrticle diversity. However, the

results of the EPF (shown in Fig. 1.5) prove that genetic operations help keeping the

population diversity. The posterior distribution still looks like a probability density

function after resampling has been performed, as opposed to the Bootstrap Filter. The

ideaisthatt he particles Omigratedé towards higher prob
being replaced or copied (which is basically what the suboptimal resampling stage in

the Bootstrap Filter does).

The Evolutionary Parti cle Filter used in all these tests has been configured with 200
particles, , " ¢, and with a limit of only two generations in the evolutionary
algorithm. Each generation, new children are generated using 10 parents, and with
n mdandn T® being the genetic operations probabilities. The generation limit
has been established in order to further mitigate sample impoverishment.
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II. Random Number Generator

The proposed random number generator architecture has to be validated, especially
the normal-distributed output. In this section, statistical analysis (e.g. histograms,
autocorrelation and partial correlation functions) are performed on the output signals
in order to check the functionality of the hardware module. The module configuration
that has been used is the bllowing one:

1 Number of samples: statistical analysis require large sampling sizes in order
not to be biased. Therefore, in these tests the total number of samples is set to
one million.

1 Data resolution: the uniform -distributed data output has a resolution of 8 bits
(unsigned integer, 8-bit decimal part), whereas the normal -distributed output
has a resolution of 19 bit s -bifi&dher pacto mpl ement
8-bit decimal part).

1 Probability density function parameters: based upon the definitio ns of the
previous paragraph, the uniform -distributed output will generate a uniform
distribution Y 1ip . The normal distribution parameters are specified in the
generic section of the hardware module. For testing purposes only, these

parameters have been &t as follows: *
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Fig. II.1. RNGoutput histograms
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The first step in the validation process requires the histograms from both outputs to
be computed. Therefore, after the simulation has finished, the data sets are processed
with MATLAB in order to obtain their histograms. The outcome of these operationsis

shown in Fig. 11.1.

Let us focus on the normal-distributed output first. Using a distribution -fitting tool,
e.g. MATLAB integrated statistics toolbox, the aim is to find the normal distribution
that best fits (i.e. represents) the data setln Fig. 1.2t is possible to see that the data
set looks like a normal distribution, a nd that the distribution -fitting tool provides a
normal distribution that almost fits this data set. Note that some values are over the
fitted normal distribution, whereas others are below. This phenomenon is due to the
limited precision in output data sig nals.

Distribution fit

. n data
normal_fit

0.0z

0015

Density

0.0

0.005

Fig. 11.2. RNG normal output distribution fitting

In Fig. 1.3, the parameters of the estimated fitting normal distribution are shown.
Note that these values correspond with the specifications that were set at the

beginning of this section.

Parameter Estimate 5td. Err.
o -0.00698601 ©0.020004
sigma 20.004 0.014145

Fig. 11.3. RNG normal output distribution fitting values
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Sample Autocorrelation Function

Sample Partial Autocorrelation Function
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Fig. 11.4. RNG normal output autocorrelation (left) and partial correlation (right) functions
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So far, the configurable random number generator generates normal-distributed

random samples with user-defined mean and standard deviation values. However,

are these random samgdes good enough? The Evolutionary Particle Filter requires

white noise signals, i.e. a stream of uncorrelated random samples with zero mean and
finite standard deviation. Therefore, some tests have to be carried out in order to
establish whether the normal output provi des white noise signals or not. Correlation
between samples can be analyzed using autocorrelation and partial correlation
functions. This is what has been presented inFig. 11.4. This output has been confirmed

as Gaussian(Fig. 11.2). However, further tests can be done. For instance, inFig. 1.5,
the QQ plot of the data set is shown. This analysis compares two distributions; in this

case, the one defined by a data set, and the reference normal distribution (computed
with the distribution fitting tool). Note that both distributions are very similar, except
in the edges. Again, this is a natural consequence of the limited data precisionin the
system, which is due to the hardware implementation.

Correlation analysis have also been performed on the other output, the uniform
distributed data output. Results from this test have been provided in Fig. 11.6. As it
can be seen, random samples draw from this output are not correlated at all.
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Fig. 11.6. RNG uniform output autocorrelation (left) and partial correlation (right) functions

All this validation tests have been carried out through simulation, where the data were
written to text files from the testbench itself. These text files were then loaded in
MATLAB in order to perform the required computations.
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Fitness Calculation

In this section, the functional validation of the fithess calculation unit is presented. The

module configuration that has been used is the following one:

compl eme

bi t it irftedd s

19

i on:

ut

resol

I nput dat a
part, 8-bit decimal part).

il

1 Mean values are introduced into the module using external signals, i.e. the

y_mean

X_meanand

specific input ports

p It

 Standard deviations: ,,

1

Look-up table elements: the LUT has been built using a 32x32 matrix fig.

I1.2).

I11.2. Note that the resolution of the

look-up table has been increased since only first-quadrant points are computed, as
discussed in the previous chapter. With this LUT, and setting the external signals so

The resulting LUT mapping can be seen in Fig.
that

v Ttthe fitness values of the input signals can be seen inFig.

p tand ‘

I.5.

lll.4 and Fig.

W

I11.3. Two-dimensional representations can also be found in Fig.

Note that he peak fithess values are obtained when ®

‘. Also notice

and

that all four quadrants have been successfully reconstructed.
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In Fig. Il .4and in Fig. Il .5itis also possible to see the other proposed enhancement:
the effective input data size. Every point that falls outside the circle defined by ¢ J,
has a fitness value of zero.

As in the previous section, this results have been obtained from simulations. Fitness
values are written to a text file from the testbench, and then MATLAB computes the
figures.

IV. Experimental Methodologies

The Evolutionary Particle Filter has been implemented in hardware using two
different methodologies.

1 Hardware In the Loop (HIL): the FPGA board is used as a coprocessor. The
main processor is inside a personal computer, and performs the preprocessing
operations on the input image.

1 System on Programmable Chip (SoPC): the EPF is included as a peripheral in
an embedded system (which also has a microprocessor) inside the FPGA.In
this approach, there is no preprocessing stage, since it has yet to be developed.

These two approaches are described in more detail in the forthcoming sections of this
chapter. Furthermore, the reasons for including both strategies will be presented.

IV.1 Hardware In the Loop (HIL)

Although the Evolutionary Particle Filter is a complex system, it is only a module
within a larger and even more complex system. However, the design of the rest of the
processing system lies out of the scope of this thesisTherefore, hardware-in-the-loop
simulations seem a feasible alternative so that the whole application can be testedand
validated .

The HIL validation platform that has been used appears in Fig. 1V.1, and consists of a
personal computer, a USB webcam and a FPGA board featuring a Xilinx Virtex-5.

Ethernet

USB

Fig. IV.1. HIL validationplatformsetup

Hardware Based Particle Filter wittEvolutionary Resampling Stage
































































































