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Preface 

The present document reports all the work that I have done so far at Centro de 
Electrónica Industrial (Universidad Politécnica de Madrid) in order to complete the 
Master of Research (MRes) degree program . 

The chosen research field for this thesis is artificial intelligence, which has been a very 
hot topic in our society for a long time . Lots of science-fiction novels portrait intelligent 
machines, which are capable of showing intelligent behavior. Real-world systems are 
still far from those levels of intelligence and reasoning capabil ities. However, more 
and more complex ideas appear as technology evolves (e.g. autonomous vehicles, 
robot assistants, etc.).  

Artificial intelligence constitutes itself a huge research field, with a large number of 
different branches (actually, new branches keep appearing almost every year). In this 
thesis, I have focused my efforts on two of these branches: particle filtering and 
evolutionary computation. This document presents a general overview of these two 
important topics, introducing the basic theory concepts needed to understand the 
proposed architecture and the latter results, which are also included in the final 
chapters.  

 

Alfonso Rodríguez  

Madrid, Spain  

March 2014 
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Introduction  

I. Motivation 

Autonomous systems require, in most of the cases, reasoning and decision-making 
capabilities. Moreover, the decision process has to occur in real time. Real-time 
computing means that every situation or event has to have an answer before a 
temporal deadline. In complex applications, these deadlines are usually in the order 
of milliseconds or even microseconds if the application is very demanding. In order to 
comply with these timing requirements, computing tasks have to be performed as fast 
as possible. The problem arises when computations are no longer simple, but very 
time-consuming operations. 

A good example can be found in autonomous navigation systems with visual -tracking 
submodules where Kalman filtering is the most extended solution. However,  in recent 
years, some interesting new approaches have been developed. Particle filtering, given 
its more general problem-solving features, has reached an important position in the 
field.  

II.  Aim 

The aim of this thesis is to design, implement and validate a hardware platform that 
constitutes itself an embedded intelligent system. The proposed system would 
combine particle filtering and evolutionary computation algorithms to generate 
intelligent behavior.  

Traditional approaches to particle filtering or evolutionary computation have been 
developed in software platforms, including parallel capabilities to some  extent. In this 
work,  an additional goal is fully exploit ing hardware impleme ntation advantages. By 
using the computational resources available in a FPGA device, better performance 
results in terms of computation time are expected. These hardware resources will be 
in charge of extensive repetitive computations.  With this hardware -based 
implementation, real -time features are also expected. 

III.  Previous Work 

Embedded intelligence has already been studied at CEI (Centro de Electrónica 
Industrial). In [1], two different approaches are evaluated: on the one hand, a particle 
filter for vehicle trajectory prediction; on the other hand, an artificial -neural-network -
based cognitive architecture. In addition, the author gives reasons to embed 
intelligence on chip, and presents some interesting examples. Another example of 
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artificial intelligence application s can be found in [2], where the author proposes a 
novel distributed artificial network for image compression in wireless visual sensor 
networks (WVSNs). 

A lot of research has also been conducted at CEI on the field of evolutionary 
computation. For instance, in [3] and all its related works and publications, an 
evolutionary algorithm is used in order to generate a self-adaptive evolvable 
hardware platform, suitable for image processing tasks.  

IV.  References 

[1] Salvador, Rub®n, òSistemas Embebidos Inteligentes,ó Master Thesis, Sept. 2008 

[2] Aledo, David, òCompresión de imágenes optimizada en consumo energético 
para redes inalámbricas,ó Master Thesis, Feb. 2013 

[3] Mora, Javier, òNoise-Agnostic Self-Adaptive Evolvable Hardware for Real 
Time Video Filtering Applications,ó Master Thesis, Sept. 2013 
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Particle Filtering 

I. Introduction 

Real-world systems represent a great challenge when trying to analyze them. State 
estimation and prediction have been considered major concerns in the field. Hence, a 
lot of research has been conducted regarding these topics. One of the most significant 
examples is the so-called Kalman filter. First introduced in 1960 [1], it has been deeply 
studied and cited in the literature [2].  

The Kalman filter is used to estimate the estate of a discrete process in which some 
measurements are taken. The model can be expressed using the following equations: 

ὼ ὃϽὼ ὄϽό ύ  

ᾀ ὌϽὼ ὺ 

The first equation corresponds to the dynamic evolution of the process (it is also called 
process model), whereas the second represents the measurement model, i.e. which 
state variables can be observed (notice that not all state variables might be observable). 
The variables ύ  and ὺ represent the process noise and the measurement noise 
respectively, and each follows a normal distribution with the following parameters:  

ύ ὔͯπȟὗ  

ὺ ὔͯπȟὙ 

Kalman filt ers have two main stages: the prediction stage, in which the process model 
equation is used in order to predict the next state; and the update stage, in which the 
measurement model is used to correct that prediction. The correction algorithm 
adjusts each prediction using the actual measurement and least squares optimization.  

 

Fig.  I.1. Kalman filter algorithm 

Prediction Stage  

1) Predict state 
ὼ ὃϽὼ ὄϽό  

2) Predict error covariance 
ὖ ὃϽὖ Ͻὃ ὗ 

Correction  Stage 

1) Compute Kalman gain 
ὑ ὖ ϽὌ ϽὌϽὖ ϽὌ Ὑ  

2) Update estimation 
ὼ ὼ ὑ Ͻᾀ ὌϽὼ  

2) Update error covariance 
ὖ Ὅ ὑ ϽὌ Ͻὖ  

 
ὼ ὼ 
ὖ ὖ 
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In Fig.  I.1, the common algorithmic implementation of the discrete Kalman filter is 
shown. Once the filter has been initialized, the algorithm iterates over each time step 
performing the two aforementi oned stages. 

The research field on which the Kalman filter has had larger impact is autonomous or 
assisted navigation. However, these filters have some important limitations , since they 
are linear Gaussian-based estimators. Real systems are sometimes non-linear and their 
noise does not necessarily have to be Gaussian, thus having to work with approximate 
models (e.g. linearized systems) which can lead to inaccurate results. In order to 
overcome these limitations, more complex approaches have been developed. Some of 
these new strategies will be discussed in following sections.  

II.  Particle Filters 

In this section, the basic theory regarding particle filtering will be exposed. Particle 
filters are based upon complex mathematical concepts. Therefore, only a few hints will 
be provided regarding each constituting element, i.e. the basic knowledge needed in 
order to understand how a particle filter works.  

II.1  Hidden Markov Models 

Linear approximations of complex non -lineal systems tend to be inaccurate when the 
operating conditions suffer large variations , i.e. when we operate far from the 
linearization point . Therefore, these models are no longer useful for complex 
applications . In this section, a general overview of hidden Markov models (HMM) will 
be provided.  

A Markov m odel is a stochastic model (i.e. systems which show random behavior) in 
which the Markov property is satisfied. The Markov property is usually used to refer 
to the memoryless property  of a stochastic process, i.e. future states of the process 
depend only u pon the present state, and not on the previous history of the system. 

A hidden Markov model is a statistical Markov model in which the system is not fully 
observable (i.e. not all the states are visible to the observer). The basic idea is that the 
state sequence is unknown, i.e. òhiddenó. Since each state has a distribution function 
over each of the possible output values, this state sequence can be determined using 
the output values (i.e. the observable variables). 

 

Fig.  II .1. Hidden Markov model example 

 x1  x3 

 y1  y2 

 x2 1.0 
0.2 

0.8 

0.4 0.6 1.0 1.0 
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A simple example of a hidden Markov model has been provided in Fig.  II .1. The 
stochastic system has three states (x1, x2, x3) but only two possible output values or 
measurements (y1, y2). Transitions between each state have been represented as blue 
arrows, and output transitions as green arrows. These transitions have different 
probabilities (the numbers  placed close to the arrows). Note that the sum of all the 
probabilities of the outgoing arrows with the same color in each state equals one. 

II.2  Bayesian Inference 

Inference can be defined as the process of drawing conclusions. If this process is 
carried out using a data set that may suffer random variations, it can be then specified 
as statistical inference. Bayesian inference is a method of inference in which Bayesõ 
rule is used. 

Bayesõ rule computes the posterior distribution from the prior distribution and the so-
called likelihood distribution (e.g. experience or knowledge). This computati on 
method is nothing but an updating process. Bayesõ rule can be expressed as follows: 

ὖὥȿὦ
ὖὦȿὥϽὖὥ

ὖὦ
 

In the previous formula , ὖὥȿὦ represents the posterior distribution, ὖὥ is the prior 
distribution, ὖὦȿὥ is the likelihood distribution (i.e.  what is the probability of 
obtaining b after having observed a) and ὖὦ is the marginal likelihood, which is 
independent of the hypothesis which is being tested (i.e. it does not affect the posterior 
distribution if the hypothesis is changed).  

Bayesõ rule can be explained in terms of a simple example: imagine that an old friend 
tells us that he has bought a new house. Consider three different hypothesis: the new 
house is in a big city, the new house is in the countryside and the new house is under 
the sea. Now imagine that our friend gives us a photograph in which the house  
location appears. This photograph represents the prior distribution.  

¶ If the picture shows a city, we will consider that it is likely that the new house 
is in a big city. If t he picture shows a large green field, we will follow the same 
reasoning process to state that it is likely that the house is in the countryside. 

¶ However, it the picture shows the sea, we will still consider the third 
hypothesis unlikely. The reason for thi s is simple: in the first two cases, our 
previous knowledge (i.e. the likelihood distribution) t ells us that it is possible 
for a person to live in the city or in the countryside, whereas in the third one, 
our experience tells us that people do not live un derwater.  

With this example, it is possible to notice that Bayesian inference does not only rely on 
evidence, but in previous knowledge or experience to update the conclusions that are 
drawn.  Particle filtering takes advantage of this specific updating process. 
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II.3  Monte Carlo Methods 

Monte Carlo methods, also called Monte Carlo simulations , are a set of computational 
algorithms that rely on repetitive random sampling in order to obtain numerical 
results. These algorithms can be illustrated with a simple example. Imagine that we 
want to compute the value of ȏ using Monte Carlo methods. First, it is important to 
keep in mind the following relationships:  

 

ὃ “Ͻὶ “ϽὙ  

ὃ ὰ ςϽὙ  

Running a Monte Carlo simulation consists of throwing random samples to the whole 
search space until a significant population is generated (i.e. with enough particles to 
consider the distribution as unbiased). Keeping this in mind , the value of ȏ can be 
approximated using the following expression s: 

ὃ
ὃ

ὃ

“

τ
 

“ τϽὃ ựự “ τϽ
ὲ

ὔ
 

The area ratio has been approximated as the quotient of the number of random 
samples inside the circle (ὲ ) over the total number of samples drawn (ὔ). 

From now on, we will assume that processes are modelled as Markovian, non-linear, 
non-Gaussian state-space models. The hidden states will be noted as ὼ, and the 
observations as ώ. The equations of the model will be expressed as follows: 

ὴὼȿὼ  

ὴώȿὼ  

The first equation corresponds to the process model (i.e. the dynamic equations of the 
system) and the second to the measurement model. Note the difference between this 
problem statement and the equations that were used to introduce the Kalman filter , 
which were less general. Using Bayesõ rule, which can also be named Bayesõ theorem, 
it is possible to obtain the posterior distribution:  

ὴὼȡȿώȡ
ὴώȡȿὼȡ Ͻὴὼȡ

ὴ᷿ώȡȿὼȡ Ͻὴὼȡ ϽὨὼȡ
 

R 
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The ideal situation would be to be able to simulate (or generate) N independent and 
identically distributed  samples (i.e. the so-called particles) from the posterior 
distribution ὴὼȡȿώȡ . However, in real -world appli cations this sampling strategy is 
not available in most of the cases. 

In order to cope with those processes in which perfect Monte Carlo sampling is not 
available, another sampling strategy called Importance Sampling (IS) is used. An 
arbitrary distribution , the so-called importance sampling distribution (also referred to 
as the proposal distribution or the importance function)  is introduced. Given that now 
the samples are not drawn from the posterior distribution, but from the arbitrary 
importance distribution, they have to be weighted in order to obtain the same results.  

“ὼȡȿώȡ  

ύὼȡ
ὴὼȡȿώȡ
“ὼȡȿώȡ

 

The previous expressions represent the importance sampling  distribution and the 
weight functions respectively.  

Importance sampling is considered a good Monte Carlo integration method. However, 
it is not suitable for iterative  implementations, as in the Kalman filter (refer to Fig.  I.1). 
Therefore, some modifications have to be introduced in the algorithm  so that all 
equations can be expressed in a recursive manner. The following equations are the 
result of this modifying process, and this implementation is named sequential Monte 
Carlo method:  

“ὼȡȿώȡ “ὼȡ ȿώȡ Ͻ“ὼȿὼȡ ȟώȡ  

ύὼ ᶿύὼ Ͻ
ὴώȿὼ Ͻὴὼȿὼ

“ὼȿὼȡ ȟώȡ
 

This approach is said to be recursive because the current value is computed using the 
previous values and performing an arithmetic operation on them (e.g. multiplication) . 

A special case appears when the chosen importance sampling distribution is the prior 
distribution. The equations are then expressed as follows: 

“ὼȡȿώȡ ὴὼȡ ὴὼȡ Ͻὴὼȿὼ  

ύὼ ᶿύὼ Ͻὴώȿὼ  

In conclusion, Sequential Monte Carlo methods are based upon: 

¶ Importance Sampling from prior distribution, i.e. process model ὴὼȿὼ . 

¶ Weight update using the measurement model ὴώȿὼ . 

¶ Recursive implementation (i.e. sequential). 

For further information on sequential Monte Carlo methods, please refer to [3]. 
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II.4  Characteristics 

The basic particle filter is based upon SIS (Sequential Importance Sampling). However, 
thi s sampling strategy generates the so-called particle degeneracy problem. It is 
assumed that a given population has suffered from this problem when, having run a 
finite time, the simulation has reached a state in which only one particl e has its weight 
with non -zero value.  

 

Fig.  II .2. Particle degeneracy phenomenon 

In Fig.  II .2, a real particle filter application is shown. The x-axis represents the number 
of particles, whereas the y-axis represents the value of the different weights. Note that 
the effects of particle degeneracy are very significant. Although the simulation has run 
only up to t = 200 (i.e. finite time), the population is now biased, having only one 
particle that is representative. 

The particle degeneracy phenomenon has been thoroughly analyzed and studied. In 
1993, Gordon, Salmond and Smith introduced the so-called Bootstrap Filter [4]. In their 
work, a novel resampling strategy was presented in order to mitigat e the effects of the 
aforementioned problem.  Some authors consider this proposal as the first formal 
particle filter in history.  
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The resampling stage of the Bootstrap Filter is very simple: if the particle population 
has N individuals, then N random number s from a uniform distribution Ὗπȟρ are 
drawn. Afterwards, this random value is compared with the cumulative sum vector 
of weights, selecting the resampled element as follows: 

ή ύ 

όᶰὟπȟρȟ ή ό ή ựự ὶ ὼ 

In the previous equations, ή is the cumulative sum vector of weights, ό is the random 

sample drawn from the uniform distribution, ὶ is the resampled population vector and 
ὼ is the posterior population vector (i.e. before the resampling stage).  

Note that with this approach, there is a resampling process in each time step. More 
recent examples perform adaptive resampling strategies checking whether the 
effective number of particles is below some threshold or not, but the underlying 

concept is the same. The effective number of particles is usually  computed as 
В

. 

 

Fig.  II .3. Sample impoverishment phenomenon (measurement in black; estimation in green) 
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Further analysis regarding resampling stages have discovered a new problem: the so-
called sample impoverishment phenomenon. This phenomenon occurs when the 
whole set of individuals do not approximate accurately the posterior distribution, 
usually because a vast majority of them is at the same point (i.e. the particles are the 
same). Studies have also shown that diversity loss is caused by using suboptimal 
resampling strategies (as the one used in the Bootstrap Filter).  

A good example of the sample impoveri shment phenomenon can be found in Fig.  II .3. 
The picture shows the particle distribution and the weights before ( on the left  side) 
and after (on the right  side) performing resampling.  It is clear that the resampling stage 
modifies the population in order to reduce the particle degeneracy problem (which 
indeed is mitigated), but there is a clear loss in terms of population diversity.  Note that 
after performing resampli ng, all the weights have the same value. This is part of the 
resampling stage itself. 

Once the main problems of particle filtering have been discussed, a question arises: 
how can particle filtering estimate the state not as a probability distribution but a s a 
unique point? The answer is quite simple, and has been represented in the following 
equation: 

ὼ ύ Ͻὼ 

Therefore, the estimated state is the weighted sum of all the particle states. 

 

Fig.  II .4. Particle filter algorithmic evolution 

Perfect Monte 
Carlo Sampling 

Importance 
Sampling 

Sequential Importance 
Sampling 

Sequential Importance 
Resampling 

Sample from ὴὼȡȿώȡ  

Sample from “ὼȡȿώȡ  

Weight update ύὼȡ
ὼȡώȡ
ὼȡώȡ

 

Sample from “ὼȡȿώȡ “ὼȡ ȿώȡ Ͻ“ὼȿὼȡ ȟώȡ  

Weight update ύὼ ᶿύὼ Ͻ
ώὼ Ͻὼὼ
ὼὼȡ ȟώȡ

 

Sample from “ὼȡȿώȡ “ὼȡ ȿώȡ Ͻ“ὼȿὼȡ ȟώȡ  

Weight update ύὼ ᶿύὼ Ͻ
ώὼ Ͻὼὼ
ὼὼȡ ȟώȡ

 

Perform resampling to avoid particle  degeneracy 
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The natural evolution of particle filtering is shown in Fig.  II .4. From perfect Monte 
Carlo sampling (i.e. samples drawn from the posterior distribution) to SIR (Sequential 
Importance Resampling), including IS and SIS, each stage goes a step further into the 
final approach.  Current research lines are focused on the green rectangle (i.e. 
Sequential Importance Resampling), trying to improve the resampling strategies that 
are used. These lines will be presented in the next section. 

To summarize, particle filters are a very useful tool in estimation and prediction tasks , 
especially when dealing with complex systems (non -linear non-Gaussian models). 
However, particle filter designers have to deal with two big problems:  

¶ Particle degeneracy: the effective number of particles (i.e. those whose weights 
are bigger than zero) tends to one in a finite simulation time. This problem 
appears per se in the basic particle filter implementation (SIS), and can be 
solved using resampling stages. 

¶ Sample impoverishment: the population does not repr esent accurately the 
posterior distribution (for instance, all the particles in the population are the 
same). This problem is caused by suboptimal resampling strategies, and can 
only be mitigated changing the resampling stage. 

III.  Current Research Lines 

In thi s section, state-of-the-art particle -filtering techniques will be reviewed . These 
techniques can be divided in to two main groups: algorithmic improvements over the 
basic particle filter, and implementation  improvements (i.e. changes in the technology 
used to implement the particle filters).  This research work is more focused on 
algorithmic improvements based on evolutionary computation, which has also been 
included as a modification  of the basic particle filter architecture  in the literature  [5]. 
Refer to the following chapter for further information on this topic.  

The most remarkable implementation improvements regarding the scope of this thesis 
are the ones related to hardware implementations. Several approaches have been 
presented and can be found in the literature. The first one that will be cited is [6]. In 
this paper, the authors present a hardware implementation of the Bootstrap Filter [4]. 
The design is described using VHDL and the target platform is a FPGA (specifically a 
Xilinx Virtex -2). FPGA parallel processing capabilities are used in [7], where the same 
particle filter is implemented in order to process data concurrently. Every stage 
performs its computation while the others are working with other valid data, i.e. the 
processing is carried out in parallel. This parallel implementation also leads to a 
significant decrease in terms of resource consumption (on a Xilinx Virtex -5 FPGA). A 
different approach  is presented in [8], since the implementation is not done only in 
hardware. On the contrary, a System on Programmable Chip (SoPC) approach is 
analyzed. An embedded processor carries out the weight computations, whereas the 
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particle update, which is a repetitive process, is speeded up using hardware 
accelerators. In addition , in this paper some elements from evolutionary computation, 
such as tournament selection algorithms in the resampling stage, are introduced. The 
platform used in [8] is an Altera Cyclone II FPGA, as opposed to the previous 
examples, in which only Xilinx devices were used. Another modified  version of the 
particle filter that is implemented in a FPGA is pre sented in [9], this time using color 
histogram enhancements. The authors take advantage (again) of the parallel 
processing capabilities of the configurable device (another Xilinx Virtex -5 FPGA). Both 
weight and histogram calculations are carried out using these capabilities.  

In the last few years, there has been an increase in the amount of  works related to 
performance improvement in particle filter implementations . Complex particle 
filtering algorithms (e.g. with huge number of particles , high dimensional problems, 
etc.) require more and more computational resources. In order to enhance the system, 
parallel computing has appeared as a feasible alternative to the classical approach. In 
[10] the authors compare the results from a classic CPU implementation with the ones 
obtained from a GPU implementation (using CUDA). Their re sults show that the more 
parallel the approach is, the faster the processing can be done. However, some increase 
in the average error appears, due to the fact that each parallel block resamples from a 
small number of individuals and not from the whole popu lation. Another example 
can be found in [11], where different parallel implementations  (GPGPUs and 
multicore CPUs) are evaluated with a system that uses over one million particles to 
perform the computations.  In this paper, an extensive sensitivity analysis is carried 
out, scaling parameters such as the number of particles per filter, the number of sub-
filters, and even the state dimensions. The authors have also extended their research 
to real-time control applications of distributed computing approaches to particle 
filtering, as in [12]. 
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Evolutionary Computation 

I. Introduction 

In 1859, Charles Darwinõs The Origin of Species was published. In that book, the concept 
of natural selection is introduced as the main reason for a given population to evolve.  
In any real environment there are limited resources, thus having the individuals to 
compete for them. Natural selection is the phenomenon in which only those 
individuals that achieve high levels of adaptation to a specific environment survive. 
Therefore, natural selection can be expressed as the survival of the fittest.  

Evolutionary progress is based on two basic elements: on the one hand, the 
aforementioned natural selection, or competition -based selection; on the other hand, 
genetic transference throughout generations of those characteristics (or traits) which 
make each individual better than the rest of the population . 

Natural selection can be analyzed on a microscopic basis by means of molecular 
genetics. Genetics states that each individual has external characteristics (phenotype) 
that can be represented at a low level (genotype), i.e. each individualõs phenotype is 
encoded by its genotype. Therefore, the phenotype can be built using the genotype.   

In each generation, new individuals are generated. In biological environments, these 
individuals can be identical to their parents (e.g. mitosis) or inherit different traits from 
each parent (e.g. meiosis). In addition to that, so me random changes tend to appear 
between generations (the so-called mutations) and contribute to have new individuals 
to evaluate. These genetic operations can be seen in Fig.  I.1. 

 

Fig.  I.1. Genetic operations: (a) Meiosis (up) and mitosis (down). (b) Mutation 

Evolutionary computation tries to apply these biological concepts to automated 
problem solving. It is commonly assumed that evolutionary computing began b ack in 
1948, when Alan Turing, who is considered to be the father of computer science and 
artificial intelligence, wrote an essay while he was working on the Automatic 
Computing Engine.  In his work, Turing stated that òIf we are trying to produce an 

(a) (b) 
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intelligent machine, and are following the human model as closely as we can we should begin 
with a machine with very little capacity to carry out elaborate operations or to react in a 
disciplined manner to orders (taking the form of interference). Then by applying appropriate 
interference, mimicking education, we should hope to modify the machine until it could be relied 
on to produce definite reactions to certain commands. This would be the beginning of the 
process.ó [1], thus introducing the idea that artificial evolution can be performed on a 
machine. However, it was in the 1960s when this concept was deeply explored. There 
were three different research lines, clearly separated: evolutionary programming 
(Fogel, Owens and Walsh), genetic algorithms (Holland) and evolution strategies 
(Rechenberg and Schwefel). Both evolutionary programming  and genetic algorithms 
were developed in the USA, whereas evolution strategies were developed in 
Germany. Another research line called genetic programming appeared in the 1990s. 
In the last few years, all these algorithms have been considered subareas of what is 
known as evolutionary computing  or evolutionary algorithms , thus ending the 
traditional separation between them.  

II.  Evolutionary Algorithms 

An evolutionary algorithm can be seen not only as an optimization algorithm (in 
which every new solution is clo ser to the optimal one), but also as a process of 
adaptation (the environment selects the best solutions. i.e. the ones that are best 
adapted to its conditions).  In order to measure this, it is absolutely necessary to define 
what is called fitness function , which gives an idea of how good a solution is.  

The underlying theory can be expressed as follows: given a fixed population 
(individuals), a new set of candidates (i.e. possible solutions) is generated from some 
of the best elements by recombination and/ or mutation. Afterwards, the whole 
population is evaluated in terms of the fitness function, and then the best individuals 
are allowed to pass to the next generation. The pseudocode of a generic evolutionary 
algorithm is shown in Table II .1. 

 

Table II .1. Generic evolutionary algorithm pseudocode 

INITIALIZE_POPULATION ();  

EVALUATE_FITNESS();  

while ( CONTINUE_ITERATING)  

{  

  PARENT_SELECTION();  

  RECOMBINATION();  

  MUTATION();  

  EVALUATE_FITNESS();  

  SURVIVOR_SELECTION();  

  set CONTINUE_ITERATING ;  

}  
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Fig.  II .1. Evolutionary algorithm flowchart 

In Fig.  II .1, the generic evolutionary algorithm flowchart is shown, emphasizing the 
iterative process that takes place. 

The initialization process is usually random, i.e. the first population is generate d 
randomly. The termination condition can be set according to different criteria: limit of 
generations reached, fitness variation below user-defined bounds  (diversity loss) , 
fitness close to an acceptable value, etc.  

II.1  Components 

There are some elements that must be taken into account when dealing with 
evolutionary algorithms. These are the main components: 

¶ Representation 

¶ Fitness function 

¶ Genetic operators 

¶ Selection operators 

II.1.1 Representation 

This is a very important element in any evolutionary algorithm definition. Each 
individual has to be uniquely defined by its representation. Looking back to the 
biological systems, an analogy can be established between genotype and 
representation. Every candidate solution would be determined by a set of genes (the 
same way phenotype was determined by genotype).  

Representation  Individual  

Genotype Phenotype 

1 0 0 1 9 

1 0 0 1 -7 
Table II .2. Representation examples 

Two representation examples have been provided in Table II .2. Although both have 
the same genotype, the phenotype is completely different. In the first example the 

Parent selection Survivor selection 

Recombination 

Mutation 

Population 

Parents Offspring 

Initialization Termination 
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genotype encodes an unsigned integer, whereas in the second it is used to encode a 
twoõs complement signed integer. Therefore, it is extremely important to adopt a good 
representation scheme, as well as to maintain it throughout the w hole algorithm, 
because the rest of the operations will be based on it.  

In evolutionary algorithms terminology, the genotype or representation is usually 
referred to as chromosome, i.e. a set of characteristics (genes) that define the 
individual.  

II.1.2 Fitness Function 

The fitness function is also called evaluation function, and it is an expression used to 
measure the quality of a solution, i.e. how close to the theoretical best achievable 
solution the current one is. 

Given that evolutionary algorithms are often used to solve optimization problems, 
sometimes the fitness function is referred to as objective function. It is important to 
keep in mind that the definition of a good fitness function, along with a good 
representation scheme, is the root of a well-designed and effective evolutionary 
algorithm.  For instance, if the problem is to find the value within an interval whose 
square value is higher, a good choice for the fitness function would be Ὢὼ ὼ. 

II.1.3 Genetic Operators 

A genetic operator can be defined as a mechanism whose function is to introduce 
diversity in any given population , generating new candidate solutions. Trying to 
replicate natural (biological) systems, two different operations have been proposed: 
on the one hand crossover; on the other hand mutation. The former approach uses two 
individuals (the so -called parents) and generates two children by recombining genetic 
characteristics from each parent. Therefore, any children has features inherited from 
both its parents, and the best genes can be transferred from a generation to the next 
one. The latter uses only one element to generate a new individual (another child) by 
changing one or even more of the genetic traits of the parent. With this mechanism 
new genes, which could provide better adaptation lev els, appear. 

 

Fig.  II .2. Genetic operators over a binary representation (chromosome) 

1 1 0 1 
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Differences between both genetic operators can be seen in Fig.  II .2. On the left side, a 
crossover operation is performed. Note that each child has half the genes from each 
parent, thus merging their genetic information . However, only one parent is necessary 
when the genetic operator is mutation, as it is shown on the right side, where only one 
gene is changed within the whole chromosome (this particular gene has been 
highlighted in red in order to emphasize the change) . 

One of the most important characteristics of this genetic operators is randomness, i.e. 
they are stochastic processes. Mutation has to be a random process in order to 
introduce only non -biased changes in the population. Crossover depends strongly on 
random drawings to decide which part of the parents would be recombined and in 
which way.  

Depending on the specific evolutionary algorithm, these genetic operators may or may 
not appear. It is a task for the designer to choose whether to use crossover, mutation 
or both operations. Further information regarding the different p roposed algorithms 
would be provided in the following sections.  

II.1.4 Selection Operators 

In each iteration (generation), two selection processes take place. The first one is used 
so that the mating pool , i.e. the individuals that would be the parents, can be selected. 
The second selection process is in charge of discarding those individuals that are not 
well -suited for the environment in which they are (this takes us back to the concept of 
natural selection). 

Parent selection is usually done using a stochastic process, in order to allow that even 
weaker individuals can be promoted to the parent status. The reason for this process 
to be based upon random drawings is simple: it prevents from getting stuck at a local 
optimum. Therefore, every individual has a chance to become a parent, even though 
the probabilities are not the same (stronger individuals, i.e. with higher fitness values, 
are more likely to be chosen than weaker individuals).  

As opposed to parent selection (stochastic process), survivor selection is usually a 
deterministic process. There are a lot of different possible implementations such as 
ordering the individuals according to their  fitness values and selecting as survivors 
the top segment, or using age criteria: only the children survive, individuals whose 
fitness is weighted with the number of generations they have been alive, etc. 

Selection operators are the algorithmic component that allow s good features, which 
have been generated through genetic operations, to be transferred from one generation 
to the next ones (note that genetic transference was one of the basic foundations of 
evolutionary progress , and that it is indeed carried  out in this particular step in the 
evolutionary algorithm ). 
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II.2  Characteristics 

Evolutionary algorithms provide us with good problem -solving capabilities.  
Moreover, the solutions obtained using these techniques are (in most of the cases, but 
not in all of them)  by far better than the ones which could result from a random search, 
even though evolutionary algorithms are highly dependent on random processes.  

Evolutionary algorithms are also commonly thought of as gene ric problem solvers . 
The same algorithm could be used to solve problems that are not related at all. The 
reason is simple (and has already been explained): the actual solutions (phenotype) 
are encoded in each chromosome (genotype). Therefore, if two non-related problems 
can be expressed using the same representation and their fitness can be evaluated in 
terms of the same fitness function, the algorithm is well -suited for both  computations . 
However, these algorithms have a drawback that is worth noticing: th e more generic 
the problem solver is (i.e. the wider the range of problems it can be applied to), the 
worse the solutions are. This means that evolutionary algorithms would lead to good 
solutions, but specific problem solvers would end up finding  better results. Therefore, 
a tradeoff between the number of problems the algorithm can solve and the quality of 
the solutions appears. This tradeoff is shown in  Fig.  II .3. Nevertheless, decreases in 
the quality of the solution  caused by evolutionary computing are negligible comparing 
with the flexibility it entails, and this is the reason why evolutionary computing is 
widely spread nowadays.  

 

Fig.  II .3. Comparison between different problem-solving algorithms 

How does an evolutionary algorithm work? Generally speaking, the working cycle of 
any of the different approaches consists of two stages. In the first stage, the algorithm 
searches the solution space, starting from the random initialization values. Once the 
algorithm has found what could be considered as a good solution, the second stage 
starts. In this step, the algorithm tries to improve the current solution. These two stages 
are clearly differentiated if analyzed on a time vs. improvement basis. The firs t stage 
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shows large variations  in fitness values in a few generations, whereas in the second 
stage the changes are almost insignificant. This temporal analysis becomes particularly 
useful when defining some termination conditions, e.g. a  good termination c ondition 
based on the execution time would be to stop when the optimization process has 
reached this second stage. 

 

Fig.  II .4. Fitness evolution vs. number of generations 

Fig.  II .4 shows a real example of an optimization process using a genetic algorithm. 
There is a huge increase in the fitness value from generation #1200 to approximately 
generation #2000. This corresponds to the aforementioned first stage of the 
evolutionary search. After generation #2000, the algorithm seems to stop its search 
(the fitness gets stuck in a plateau, especially after generation #5000), due to the fact 
that better solutions are more and more unlikely to appear . 

In the forthcoming sections, some of the most used examples of evolutionary 
algorithms would be explored. First, the four traditional lines (i.e. genetic algorithms, 
evolution strategies, evolutionary programming and genetic programm ing) and then, 
a set of new ideas that have been developed all over the years. The main lines would 
be presented in their most common approaches, which means that subtle variations 
might be found in the literature.  
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II.3  Genetic Algorithms 

Genetic algorithms are said to be the most extended form of evolutionary algorithms. 
Commonly used in optimization problems, these algorithms use nu meric strings as 
representation, usually in the form of binary or integer arrays.  Although both 
crossover and mutation are used, the former is the main operator.  The parent selection 
scheme uses a fitness-biased random approach. On the contrary, the survivor selection 
scheme is usually generational (only the offspring survives , thus replacing the whole 
previous population ) or deterministic (always taking into account fitness criteria).  

II.4  Evolution Strategies 

Evolution strategies try to take advantage of a very important feature: self -adaptive 
capabilities. In order to achieve this goal, some algorithmic parameters are evolved 
along wit h the solutions (these parameters could even be included as part of the genes 
that constitute a chromosome). Each chromosome is usually represented as an array 
of real numbers. Evolution is mutation -based in almost every case, but recombination 
can also appear as intermediate recombination (i.e. averaging the genes of the parents), 
or discrete recombination (i.e. selecting randomly as a child one of the parents). Each 
individual within the population has the same likelihood of being selected as a parent 
(no fitness-biased criteria appear in this approach), and the surviving population can 
be generated (always as a deterministic process) using only the offspring or including 
the previous population to the offspring. The former strategy seems to provide better  
results, because it avoids the memory effect, allowing transitions from local optima.  

II.5  Evolutionary Programming 

Evolutionary programming is really useful when the target problem is to optimize a 
fixed program structure which has some parameters that can be changed. Originally 
developed to generate artificial intelligence (emulating learning processes), 
evolutionary p rogramming considers adaptation and environment prediction must -
have features. This algorithm is only based on mutation, generating one child f rom 
each of the individuals, i.e. every individual is considered a parent.  Survivors are 
selected randomly from the initial population plus the offspring.  

The traditional approach used in evolutionary programming, which illustrates 
accurately the underlyin g concepts of this field, was to evolve a predictor system 
represented as a finite state machine or FSM. As stated before, the architectural 
characteristics of the systems are fixed, but some parameters can be changed: number 
of states, number of inputs, number of outputs, adding or deleting transitions between 
states, changing the initial state, etc. However, this classical example is no longer 
considered as standard evolutionary programming, due to the fact that this algorithm 
has been mostly used to optimize real-valued parameter vectors since the 1990s. 
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II.6  Genetic Programming 

Also focused on program optimization, the main difference between evolutionary 
programming and genetic programming is that the latter represents each program as 
a tree and changes its whole structure (as opposed to the former, in which only some 
parameters were changed). Both genetic operators can be used in order to modify 
branches in the trees (recombining by swapping, or mutating by adding or deleting  
some of the leaves). Parent selection follows the same scheme as in genetic algorithms 
(fitness-biased random selection), and survivors are selected using generational 
criteria (i.e. only the offspring survives).  

 

Fig.  II .5. Genetic programming representation: tree structure 

In Fig.  II .5, a typical chromosome in genetic programming is shown. The genotype 

encodes the function Ὢὼȟώ υϽÓÉÎ ὼ . 

II.7  Other Approaches 

Evolutionary computing has been a developing field ever si nce it appeared. There is a 
vast range of different implementations and algorithms, but for the sake of 
convenience only a few of them will be presented here. 

When dealing with complex problems which can be divided in simpler subproblems, 
memetic algorithm s may be a wise choice. These algorithms are hybrid, for they 
combine evolutionary processes and problem-solving knowledge (heuristics). Given 
that a new component is introduced, a new stage is also necessary: the learning stage, 
in which the algorithm gat hers every piece of knowledge that is available. Memetic 
algorithms can be found in the literature as hybrid genetic algorithms, Baldwinian 
evolutionary algorithms or Lamarckian evolutionary algorithms, but all of them have 
in common the addition of one or  more local search (i.e. better solutions in the 
neighborhood of a known one) stages to the traditional evolutionary algorithm.  
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Coevolution  seems to be the most appealing concept regarding evolutionary 
computing, and can be implemented as a cooperative algorithm or as a competitive 
algorithm. Either it is one or the other, the population has different species. In 
cooperative coevolution, each species represents a part of the problem and cooperate 
in order to come with a solution of a larger problem. As oppo sed to that, competitive 
coevolution is based on individuals gaining fitness at each otherõs expense, i.e. the 
species fight against each other.  

The last example of evolutionary computation techniques is called i nteractive 
evolution , and turns out to be very useful when dealing with problems in which there 
is no such thing as a clearly defined fitness function. Subjective opinions have a strong 
influence in the selection process. Therefore, biased external interference is what best 
defines interactive evolution, even though this interference might or might not be 
direct (e.g. deciding whether an individual can survive or not).  

III.  Current Research Lines 

Evolutionary computation is an enormous research field . Therefore, we would only 
present those works closely related to particle fi ltering  (i.e. particle filters which have 
been enhanced with evolutionary computing).  

Particle filtering and evolutionary algorithms, especially genetic algorithms, have 
conceptual similarities. These similarities have been studied and documented for a 
long time. For instance, in [2] a modified particle filter is presented. The author uses 
genetic operators such as crossover and mutation to implement the pred iction stage 
of the filter, describing the whole algorithmic implementation  of what he calls Genetic 
Algorithm Filter . The connection between particle filtering (Monte Carlo simulations) 
and Bayesian inference and their application to evolutionary environments has also 
been studied. In [3], the foundations for Bayesian evolutionary computation are 
presented. The idea is to guide the evolutionary process using Bayesõ rule, since it is 
stated in the paper that the most probable solution could be considered the best one. 
However, this is not state-of-the-art research.  

In the last few years there has been a significantly higher interest in using evolutionary 
computing concepts in particle filtering. All  the conducted research is focused on 
reducing one of the two main problems a suboptimal resampling strategy generates: 
sample impoverishment (refer to the Particle Filtering chapter for more information 
on this particular  issue). Evolutionary algorithms, as stated in previous sections, use 
genetic operators in order to transfer good genes and to introduce genetic diversity . 
This last feature is the key to understand why evolutionary computing is suitable for 
solving sample impoverishment (i.e. diversity loss) problems. Hence, in [4] another 
evolutionary approach is introduced in order to mitigate those effects. At the very 
beginning of the paper, the authors state that previous works in the field had not fully 
exploited the advantages of evolutionary computing. Therefore, they propos e 



Evolutionary Computation 31 

  Hardware-Based Particle Filter with Evolutionary Resampling Stage 

introducing genetic operators right after performing the  importance sampling stage 
and immediat ely before the resampling stage, which uses a parameter (effective 
number of particles) in order to decide whether to perform resampling or not. In this 
paper it is also shown that the mutation operator provides better dynamic response 
when the state jumps abruptly.  

Other research lines use parallel distributed filters, i.e. with several subpopulations 
evolving at the same time. In [5], the authors use these subpopulations to perform 
genetic operations and, from time to time, migrate the best individuals from one 
subpopulation to the others so that the best genetic traits can be shared. This also leads 
to an improvement in global optimum search.  Moreover, the concept of genetic 
resampling stage is introduced in this paper for the first time.  Nevertheless, the paper 
provides only simulation results.  

More complex examples can also be found in the literature: a hybrid evolutionary 
particle filter is presented in [6]. This hybrid approach  tries to take advantage of both 
genetic algorithms (to maintain particle diversity) and particle swarm optimization  (to 
optimize the final particle distribution) . Furthermore, the algorithm presented has 
parallel features, thus reducing computation times. The strategy presented divides the 
population in two groups, and then performs the specific operations that are required: 
in one group, a genetic algorithm; in the other, particle swarm optimization.  Before 
the next time step, a migration operation is perf ormed (to share genetic information, 
as in previous examples). 

Real-world applications include object tracking, as in [7]. Another evolutionary 
approach is presented in order to deal with sample impoverishment. In this case, the 
evolutionary resampling stage may or may not take part in the estimation loop. The 
decision is made based on the aforementioned parameter, i.e. the effective number of 
particles. The algorithm presented provides good results but it is not accurate in 
occlusion tracking sequences. 

Recent studies with differential evolution have been conducted in order to reduce 
significantly sample sizes [8]. The differential evolution algorithm divides the particles 
in three different groups: the firs t group would undergo crossover; the second group 
would undergo mutation; the last group would not suffer any modificati on. One 
important fact about this work is that the evolutionary stage takes place at the very 
beginning of the process, and it is immediately followed by the importance sampling 
stage. 

In conclusion, evolutionary computation has found a vast field of appli cation in which 
optimization is not the main concern. The characteristic properties of the genetic 
operators make evolutionary algorithms a potential tool in particle filtering, since they 
are able to reduce to almost negligible values both problems: particle degeneracy (it is 
avoided performing resampling) and sample impoverishment (it is avoided 
introducing genetic diversity in the particle population).  
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Evolutionary Particle Filter 

I. Introduction 

In this chapter, the prop osed architecture is presented. The Evolutionary Particle Filter 
has been designed for movement estimation  application s. In this application, the state 
variables are four: x-axis position, y-axis position, x-axis velocity and y -axis velocity.  

 

Fig.  I.1. State variables 

As far as this implementation is concerned, it has been assumed that the movement 
does not have any acceleration at all. The only allowed changes in both velocity 
components are the ones caused by the addition of random noise. The motion 
equations can be then expressed as follows: 
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This motion model can also be expressed in matrix -based notation: 
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As opposed to [1], this model does not perform any estimations regarding the current 
velocity in each axis. Therefore, a significant reduction in terms of memory resources 
is achieved, since it is no longer necessary to store previous position values. 
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However, the state space is not observable. The only state variables that are 
measurable are both x-axis and y-axis positions. Therefore, the measurement model 
can be represented (in matrix notation) as: 

◑▓ ὌϽ●▓ 

Ὄ
ρ π π π
π ρ π π

 ◑▓
ᾀὼ
ᾀώ 

The most important advantage this proposal has is that it is highly application -
independent. This estimation engine can be used to track a wide range of different 
elements, as long as their state can be expressed as the aforementioned ●▓ array. This 
feature makes the system incredibly suitable for a reconfigurable platform. By using 
different (reconfigurable) preprocessing stages, the Evolutionary Particle Filter can 
track colored objects, corners, shapes, etc. 

 

Fig.  I.2. Evolutionary Particle Filter flowchart 

The modified flowchart of the Evolutionary Particle Filter is shown in Fig.  I.2. Note 
that this flowchart is based on the basic particle filter but adding an extra stage, which 
is in charge of performing resampling using an evolutionary algorithm.  

The rest of this chapter is organized as follows: first, the algorithmic implementation 
of the evolutionary resampling stage will be presented and discussed. Then, the 
hardware -based modules will be explained in detail.  

Initialization  

Importance Sampling  

Evolutionary Resampling  

Weight calculation  

Process Model 

Measurement Model  
+ 

Actual Measurement  

State Estimation 
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II.  Evolutionary Resampling Stage 

Placed right after the Importance Sampling process, i.e. the process model update, and 
immediately before weight calculation and state estimation, the evolutionary 
resampling stage constitutes itself the distinctive element of the EPF algorithm. 
Although s ome approaches can be found in the literature (as in the aforementioned 
proposal of [2]), some modifications have been introduced and will be discussed in 
the forthcoming paragraphs.  

A genetic algorithm has been selected, due to the flexibility of introducing both genetic 
operators (crossover and mutation) and to the fact that chromosomes will be 
represented as integer arrays. The target application has some timing constraints (e.g. 
frames per second in the camera); therefore, the termination condition is set to be 
reaching a fixed  number of generations. 

II.1  Crossover 

Arithmetic crossover will be used as recombination operator . Crossover takes place 
whenever a random number ὴͯ Ὗπȟρ satisfies ὴ ὴ, being ὴ the crossover 
probability. Arithmetic crossover  can be expressed in terms of the following equations: 

ὼ Ͻὼ ρ Ͻὼ

ὼ Ͻὼ ρ Ͻὼ
 

where ὼ  and ὼ are the children, i.e. the offspring, and can be obtained weighting the 

states of the parents ὼ and ὼ. The subscripts (k) represent the current time step in 

which the system is, whereas the superscripts are the individual identifiers ( a, b for t he 
children; i, j for the parents). The weight factor is a random number drawn from a 
uniform distribution ͯ Ὗπȟρ. 

II.2  Mutation 

Mutations should occur whenever a random number ὴͯ Ὗπȟρ satisfies ὴ ὴ , being 
ὴ  the mutation probability. In this proposal,  two mutation operations can be 

performed. If ὴ ὴ Ͻὶ, with ὶ
 

 
 being the mutation ratio,  a local 

search mutation operator is used. Otherwise, the mutation operator generates a 
random child ov er the whole search space. 

Local search mutation adds Gaussian noise, i.e. random numbers , to the parentsõ state 
variables, as can be seen in the following equation: 

ὼ ὼ  

Random placement mutation generates a random child using this expression: 
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ὼ ὼ Ͻὼ ὼ  

In these expressions ὼ is the child, ὼ the parent (only in local search mutation), 
 ὔͯ‘ȟ„ ÏÎÌÙ ÉÎ ÌÏÃÁÌ ÓÅÁÒÃÈ ÍÕÔÁÔÉÏÎ, ὼ  and ὼ  the limits of the search space 
(only in random  placement mutation) , and ͯ Ὗπȟρ (only in random placement 
mutation).  

Each of these two mutation operations has a defined purpose. On the one hand, local 
search helps reaching close optimal points. On the other hand, random placement 
promotes global opti mization (not just l ocal), making possible for the population to 
jump to unexplored regions in the state space and evolve there. Hence, better solutions 
might be obtained. 

II.3  Selection 

The chosen selection algorithm is the so-called Stochastic Universal Sampling (SUS). 
This algorithm appears as a development of Fitness Proportionate Selection (FPS), also 
known as roulette wheel algorithm,  even though the drawing of random numbers is 
carried out in  a different manner. Considering that ὲ  elements have to be selected, 
FPS draws ὲ  different  uniform  random numbe rs, whereas SUS only draws one 
using a uniform distribution.  

ὶͯὟ πȟ
ВὪ

ὲ
 

In the last expression, Ὢ is the fitness value of the individual ὼ,  ὲ  is the number of 
individuals that have to be selected, and ὶ is the value which is drawn.  

How does Stochastic Universal Sampling  work? First, individuals have to be sorted 
according to their fitness value.  

Ὢ Ὢ Ὢ Ễ Ὢ Ὢ  

Ὢ Ὢ Ễ Ὢ Ὢ  

Then, the cumulative fitness vector is computed starting with the individual that has 
the highest fitness value.  

ή Ὢ 

Once the random number ὶ has been drawn, the individual k is selected if ὶ ή. 
Otherwise, ὶ is incremented as follows: 

ὶ ὶ
ВὪ

ὲ
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Fig.  II .1. Stochastic universal sampling 

Therefore, the idea is that every selected individual is equidistant with the previous 
and the following element. A good example has been provided in Fig.  II .1, where 
ὲ χ. The first element is selected using the random number ὶ, and then the 
following elements are obtained adding a fixed increment, which depends on both the 
number of desired selected individuals and the maximum value of the cumulative 
fitness vector. In this particular example, the seven selected individuals are 
ὼȟὼȟὼȟὼȟὼȟὼȟὼ . This selection algorithm has very important features, such as 

being unbiased. However, the most important characteristic is that with this selection 
strategy, even the weakest members of the population can be selected, as in the 
previous example. This also prevents the evolutionary process from remaining stuck 
at a local maximum.  

 

Table II .1. Example code for Stochastic Universal Sampling selection 

x0 x1 x2 x3 x4 x5 

 

0 Ὢ 

ВὪ

ὲ
 

ὶɴ πȟ
ВὪ

ὲ
 

i = 0;  

j = 0;  

inc = q[ N- 1]/ N_SEL;  

r = inc *( rand ()/ RAND_MAX);  

while ( i <N_SEL)  

{  

  if ( r <=q[ j ])  

  {  

    selected [ i ]  = j ;  

    r += inc ;  

    i ++;          

  }  

  else  

  {  

    j ++:  

  }  

}  
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This selection scheme has been adopted in this work as both parent and survivor 
selection algorithm. The main reason for this decision is that implementing more than 
one selection algorithm might increase significantly resource utilization rates . 
Therefore, survivor selection will be stochastic in this proposal , rather than 
deterministic as in many examples in the literature.  

To summarize, the proposed evolutionary algorithm is a genetic algorithm with 
Stochastic Universal Sampling selection, arithmetic recombination and both local and 
global mutation schemes, and its flowchart can be seen in Fig.  II .2. 

 

Fig.  II .2. Evolutionary resampling flowchart 

III.  Hardware Architecture 

The Evolutionary Particle Filter has been implemented as an IP (Intellectual Property) 
core, i.e. a hardware module. A modular approach has been adopted so as to make the 
design stage easier and to favor reusability. Moreover, it could allow future 
reconfiguration within the core  itself .  

YES 

NO 
END? 

Parent selection Stochastic Universal Sampling 

Survivor  selection Stochastic Universal Sampling 

Mutation  ὼ ὼ Ͻὼ ὼ  

ͯ Ὗπȟρ 

ὼ ὼ  

 ὔͯ‘ȟ„ 

Random placement Local search 

Crossover ὼ Ͻὼ ρ Ͻὼ

ὼ Ͻὼ ρ Ͻὼ
 ͯ Ὗπȟρ 

Arithmetic crossover 
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Fig.  III .1. Evolutionary Particle Filter block diagram 

The proposed modular architecture can be seen in Fig.  III .1. Some control signals and 
data connections have been simplified in the diagram in order to avoid excessive 
complexity. The signals highlighted in red represent the external connections of the 
hardware module, i.e. the interface with the top system.  The main modules of the 
Evolutionary Particle Filter system are:  

¶ Random number generator. 

¶ Fitness calculation. 

¶ Particle registers. 

¶ Process model. 

¶ Crossover unit. 

¶ Mutation unit.  

¶ Dividers.  

¶ Control logic.  
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These blocks will be presented in detail in the forthc oming sections of this chapter. 

Hardware designs have some limitations in terms of arithmetic operations. Desig ners 
have to decide whether to use integer, fixed-point or even floating -point arithmetic . 
There is an obvious tradeoff between precision and resource consumption (or time):  
the more precise the operations have to be, the more complex the resulting system is. 
Focusing on the Evolutionary Particle Filter , it seems clear that estimation and 
prediction tasks require accurate computations, at least to some extent. However, extra 
complexity in the design is not desirable. For this reason, fixed-point arithmetic has 
been selected as the most convenient implementation strategy in this thesis. 

Fixed-point arithmetic uses real number representations in which the decimal part, i.e. 
those digits after the radix point, and the integer part have a fixed size. For instance, 
in Fig.  III .2, ὲ  would represent the size, in bits, of the decimal part, and ὲ would 
represent the size of the integer part.  

 

Fig.  III .2. Fixed-point number representation 

Having a fixed number of bits for both integer and decimal part generates some 
problems. The first problem a designer might  face is overflow or underflow 
phenomena, which occur when the result of an operation cannot be represented with 
the given resolution, i.e. the number of bits, the system has. For example, the result of 
ςτ ρς with an unsigned integer resolution of 5 bits would be 4 instead of 36. 

Another important problem of using fixed -point arithmetic is that not all the numbers 
within an interval can be represented, since the less significant bit determines the 
minimum increment.  Therefore, the resolution is finite.  For example, if the decimal 
part resolution were 4 bits, the minimum increment would be 0.625.  

In this design, numbers are represented as 19-bit integers, unless otherwise specified: 
8-bit decimal part, 10-bit integer part and 1 bit to represent the sign (2õs complement). 
This gives an overall representation range from -1024.0 to 1023.99609375. 

III.1  Random Number Generator 

Stochastic processes play a very important role in the Evolutionary Particle Filter. On 
the one hand, normal -distributed random numbers are used in some stages (e.g. 
process model update, or importance sampling). On the other hand, the evolutionary 
algorithm uses uniform random numbers to decide whether to perform a genetic 
operation or not.  Therefore, the random number generator is an essential part of the 
design. 

ὲ  ὲ 
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The target application is not as demanding as a cyphering system would be. Therefore, 
a pseudorandom number generator (PRNG) is enough to meet the requirements. 
Moreover, designing a true random number generator (TRNG) would be a hard task, 
since they have strong dependencies on physical phenomena that are really hard to 
validate t hrough simulation.  

Uniform distributions  of pseudorandom numbers  can be generated with a linear-
feedback shift register, also known as LFSR. LFSRs are built using a shift register in 
which the input bit is a linear combination of some of the register bits , i.e. a linear 
combination of the register state. This linear combination can be done, for example, 
with a XOR gate (actually, this is by far the most used alternative) , and can be 
expressed in terms of a feedback polynomial. 

 

Fig.  III .3. 3-bit LFSR 

A 3-bit LFSR is shown in Fig.  III .3. The feedback polynomial for this specific LFSR is 
ὴὼ ὼ ὼ ρ. Note that in the feedback polynomial the bits that are combined 
appear as ὼ, being t the so-called tap.  

LFSRs can be maximal -length only if  there is an even number of taps, and if the whole 
set of taps is relatively prime, i.e. no common divisor to all taps exists. If these 
requirements are met, the LFSR will go through all possible states, except that in which 
all the bits are equal to zero. In maximal -length LFSRs, there are ς ρ possible states, 
being n the register size (i.e. the number of bits). If n is small, the sequence cannot be 
considered as random. However, if n is set to be relatively large, the outgoing sequence 
can be thought of as a random sequence. In [3], maximal -length LFSRs and their taps 
can be found. The LFSR used in this thesis is based upon that application note . 

The initial value in a LFSR is called seed. This seed cannot be set to zero, since that is 
a non-return state (as stated in the previous paragraph). Once the LFSR has gone 
through all possible states, i.e. its period, the seed will appear again, and the whole 
sequence will be repeated. 

D Q D Q D Q 

ὼ ρ ὼ ὼ 
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Once the uniform -distributed random number generation has been solved using a 
LFSR, the next problem to address is the normal-distributed random number 
generation. Some hardware implementations have been proposed in the literature, for 
example in [4]. In this particular example, the Box-Muller method is used in order to 
generate the random samples. Complex mathematical operations, such as natural 
logarithms and square roots, are performed to obtain two different normal -distributed 
samples from two different uniform -distributed values. As a result, many resources 
are necessary to implement this solution . 

In this thesis, an alternative solution is presented. This solution is based upon the 
central limit theorem and the outcome is a very simple architecture. In probability 
theory, the central limit theorem states that, if some conditions are met, the arithmetic 
average of a sufficiently large set of different independent random variables , each of 
them with known mean and standard deviation values,  will be approximately 
normally distributed.  A slight modification of this statement can be expressed as 
follows:  

… ὴͯὨὪ‘ȟ„ 

… ὔͯὲϽ‘ȟЍὲϽ„ 

The random distributions … can be arbitrarily chosen. Since the LFSR will produce a 
uniform -distributed random variable at its output port, it seems reasonable to choose 
uniform distributions.  A uniform distribution in the interval ὥȟὦ has the probability 
density function that is  shown in Fig.  III .4.  

 

Fig.  III .4. Uniform distribution probability density function 

Moreover, the mean and the standard deviation can be computed using the following 
equations: 

… Ὗͯὥȟὦ 

‘   „
Ѝ

 

p(x) 

x ὥ ὦ 

ρ

ὦ ὥ
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It is possible then to select ὲ ρς in order to save some computations, because the 
square roots disappear in the expression of the central limit theorem. 

… ὔͯρςϽ‘ȟЍρςϽ„ ὔφϽὥ ὦȟὦ ὥ 

Since twelve different uniform -distributed variables have to be added, a new problem 
arises: how to perform this mathematical operation . 

¶ Parallel solution: using twelve different LFSRs and adding their output 
values. This solution is not feasible due to excessive resource consumption. 

¶ Serial solution: using only one LFSR and registering twelve output values. 
Once the values have been registered, the addition is carried out. This 
solution is better than the previous one, but normal -distributed samples have 
a latency of twelve clock cycles. 

¶ Correlated solution: this was the first proposal that reduced the latency to one 
clock cycle. However, it is not a good alternative, because the output values 
cannot be considered white noise, since they are correlated. The architecture 
used one LFSR and twelve different accumulators, each with an increasing 
delay of a clock cycle, as can be seen in Fig.  III .5.  

 

Fig.  III .5. Correlated random number generation scheme (source of correlation has been highlighted) 

All these solutions were discarded in the design stage because of the aforementioned 
reasons. 

The proposed solution uses only a large LFSR and twelve adders. In the LFSR, the 
constraint ὸὥὴ ρςϽὲ, where n is the size in bits of the uniform variables that are 
added, has to be met. This condition is expressed graphically in Fig.  III .6. 

 

Fig.  III .6. Normal-distributed random number generator proposal 
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With this structure, twelve different independent and identically distributed  random 
numbers can be generated in only one clock cycle.  

The final implementation consists of a maximal -length 111-bit LFSR, whose taps are 
111 and 101. The VHDL module symbol is shown in Fig.  III .7, and it has some 
parameters that are configurable. 

 

Fig.  III .7. Random number generator symbol 

¶ SEED: the initial value of the 111-bit LFSR. 

¶ MEAN: mean value of the normal distribution.  

¶ STD_DEV: standard deviation of the normal distribution.  

¶ INT_PART: integer part size in bits.  

¶ DEC_PART: decimal part size in bits. 

¶ OUTPUT_BITS: uniform output size in bits.  

The size of the twelve uniform -distributed numbers is DEC_PART. This size, along 
with the uniform output size appears in Fig.  III .8. This architecture is compliant with 
the tap requirement, since ρςϽὈὉὅͅὖὃὙὝρςϽψ ωφ ρππὸὥὴ. 

 

Fig.  III .8.LFSR architecture 
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Given that the output values are not one-bit -sized, the LFSR operation has suffered 
some small variations that are shown in Fig.  III .9. 

 

Fig.  III .9. LFSR operation 

The random number generator module provides three different outputs.  

¶ uniform : uniform -distributed number with a resolution of OUTPUT_BITS 
bits. It is an unsigned integer that represents a real number in the interval 
πȟρ. 

¶ normal : normal-distributed number ὲͯ ὔὓὉὃὔȟὛὝὈͅὈὉὠ with a resolution 
of INT_PART+DEC_PART+1 bits. It is a signed (2õs complement) integer that 
codes a fixed-point number with INT_PART bits representing the integer part 
and DEC_PART bits representing the decimal part. The extra bit is used to 
code the sign. 

¶ normal_valid : control signal. It is one if the normal output represents a valid 
sample and zero if it does not. This signal has been included in the design in 
order to make it compatible with the other proposed random number 
generators (in which the latency was over one clock cycle), even though its 
value will always be one , since the latency of the proposed design is only one 
clock cycle. 

The effective numeric values of the signals in this module, as well as their 
characteristics (i.e. attributes) are shown in Table III .1. 

Name Mode  Attributes  Min imum  Max imum  Increment  

clk in rising  0 1 - 

reset in high 0 1 - 

uniform  out unsigned 0 ρ ς ͺ  ς ͺ  

normal  out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

normal_valid  out - 0 1 - 

Table III .1. RNG signal characteristics 
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III.2  Fitness Calculation 

Weight calculation is a very important stage in particle filtering, and fitness calculation 
plays a similar role in evolutionary computation. In this thesis, these two operations 
have been combined into one single unit. The fitness calculation unit obtains the 
fitness, i.e. the weight, of any particle. 

 

Fig.  III .10. Fitness graphic calculation 

A simple example on how to compute the weight of a particle has been provided in  
Fig.  III .10. The measurement noise standard deviation is used to generate a normal 
distribution whose mean value is the predicted measurement, which is obtained after 
applying the measurement model to the particle current state . The particle weight is 
then calculated as the probability of obtaining the actual measurement in that normal 
distribution.   

Since the proposed measurement model provides two-element vectors, the normal 
distribution around the  mean values has two dimensions, i.e. it is multivariate.  

ύ Ὢͯ ὔⱧȟ  Ⱨ
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In the previous expressions, it is possible to see that the mean values are ‘ ᾀὼ and 

‘ ᾀώ, which are the predicted measurements, i.e. the expected measurement 

values, obtained from each particle after applying the measurement model to the 

population (●▓
░ represents the predicted state of the particle i at time k). The covariance 

matrix  has constant values, and the state variables are considered independent, i.e. 
uncorrelated. Therefore, the covariance „ π. 

In order to compute the probability of a given state defined by its x -axis and y-axis 
state variables x and y, the following formula is used:  

Ὢὼȟώ
ρ

ςϽ“Ͻ„Ͻ„Ͻρ ”
ϽὩ

Ͻ
Ͻ

ϽϽ Ͻ

Ͻ
 

In the previous equation, ‘ and ‘ are the mean values of x-axis and y-axis state 

variables respectively; „ and „ are the standard deviations of x-axis and y-axis state 

variables respectively; ” is the correlation between x-axis and y-axis state variables. 
Taking into account the aforementioned condition of uncorrelated state variables, i.e. 
„ π, the equation is reduced to: 

Ὢὼȟώ
ρ

ςϽ“Ͻ„Ͻ„
ϽὩ

Ͻ

 

Implementing a hardware module in order to perform this operation is almost 
impossible, since it is very complex. Therefore, another approach has been used: this 
module has been implemented as a Look-Up Table (LUT), i.e. an array that replaces 
complex computations with array indexing operations.   

Before explaining how the LUT is generated, the hardware module architecture will 
be presented. The VHDL module symbol is shown i n Fig.  III .11, and it has some 
parameters that are configurable. Note that it is a combinational logic block, and 
therefore it has no clock input.  Moreover, it has no reset port either. 

 

Fig.  III .11. Fitness calculation symbol 
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¶ INT_PART: input integer part size in bits. 

¶ DEC_PART: input decimal part size in bits. 

¶ OUTPUT_BITS: output size in bits, i.e. fitness/weight resolution.  

¶ MEAN_X: x -axis state variable mean value. 

¶ STD_DEV_X: x-axis state variable standard deviation.  

¶ MEAN_Y: y -axis state variable mean value. 

¶ STD_DEV_Y: y-axis state variable standard deviation. 

¶ VALUES: number of divisions in a single axis. This determines the resolution 
of the LUT, whose total size can be computed as ὠὃὒὟὉὛ. 

¶ EXT_MEAN: selects whether the mean values are defined by the generic 
parameters or by the external signals. 

The look-up table is generated during the synthesis process, using the computational 
resources available in the computer. The LUT values are calculated as real numbers 
and then are truncated in order to represent then in integer precision. When the system 
is running, particle fitness values are obtained using the LUT and zero-order 
interpolation.  The VHDL coding of the look -up table generation is shown in both Fig.  
III .12 and Fig.  III .13. 

 

Fig.  III .12. LUT generation in VHDL coding 

(...)  

 

architecture  rtl of  normal_eval is  

 

  --  Type definitions  

  type  pdf is  array  ( VALUES** 2- 1 downto  0)  of  

std_logic_vector ( OUTPUT_BITS- 1 downto  0);  

 

  --  Function definitions  

  impure  function  generate_pdf return  pdf is  

 

  (...)  

 

  end  generate_pdf ;  

 

  --  Constant definitions  

  constant  pdf_values :  pdf :=  generate_pdf ;  

 

begin  

 

(...)  
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Fig.  III .13. Normal distribution probability density function generation in VHDL 

  --  Function definitions  

  impure  function  generate_pdf return  pdf is  

    --  Constants  

    constant  min     :  real  :=  0.0 ;  

    constant  max     :  real  :=  real ( 2** INT_PART 

    constant  inc     :  real  :=  ( max- min )/ real ( VALUES);  

    constant  mean_x  :  real  :=  0.0 ;   

    constant  sigma_x :  real  :=  real ( STD_DEV_X);  

    constant  mean_y  :  real  :=  0.0 ;  

    constant  sigma_y :  real  :=  real ( STD_DEV_Y);  

    --  Variables  

    variable  pdf_aux :  pdf ;  

    variable  calc    :  real  :=  0.0 ;  

    variable  norm    :  real  :=  0.0 ;  

    variable  point_x :  real  :=  min ;  

    variable  point_y :  real  :=  min ;  

  begin  

 

    --  Calculate normalizing constant  

    norm :=  1.0 /( 2.0 * MATH_PI* sigma_x * sigma_y )* exp ( - 1.0 / 2.0 *((( mean_x-

mean_x)** 2)/( sigma_x ** 2)  + (( mean_y- mean_y)** 2)/( sigma_y ** 2)));  

 

    --  Generate LUT with PDF  

    x_loop :  

    for  i in  0 to  VALUES- 1 loop  

       

      y_loop :  

      for  j in  0 to  VALUES- 1 loop  

        

        --  Compute Probability Density Function  

        calc :=  1.0 /( 2.0 * MATH_PI* sigma_x * sigma_y )* exp ( -

1.0 / 2.0 *((( point_x - mean_x)** 2)/( sigma_x ** 2)  + (( point_y -

mean_y)** 2)/( sigma_y ** 2)));  

         

        --  Store value  

        pdf_aux ( i * VALUES+j )  :=  

std_logic_vector ( to_unsigned ( integer ( calc *( 2.0 **( OUTPUT_BITS) -

1.0 )/ norm ), OUTPUT_BITS));  

         

        --  Increment point_y  

        point_y :=  point_y + inc ;  

         

      end  loop ;  

       

      --  Increment point_x  

      point_x :=  point_x + inc ;  

      --  Reset point_y  

      point_y :=  min ;  

     

    end  loop ;  

     

    --  Return solution  

    return  pdf_aux ;  

 

  end  generate_pdf ;  
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In order to reduce resource utilization rates  and maximize the LUT resolution , some 
enhancements have been implemented in this unit : 

¶ Since 99.7% of the normal distributed values can be found within three 
standard deviations of the mean, it is possible to define the effective size as 
the minimum bit size that allows the representation of  the number σϽ„ , 
where „ άὥὼὛὝὈͅὈὉᾠὢȟὛὝὈͅὈὉᾠὣ. The LUT is built for that 
particular bit s ize instead of the whole dynamic range defined by INT_PART. 
Any value out of the effective size range has a zero value at the output port. 

¶ Considering  that, the resulting multivariate normal distribution is symmetric. 
Therefore, it is only necessary to store the values in one of the four quadrants 
(rectangular coordinate system). 

 

Fig.  III .14. LUT enhancements 

These modifications are shown in Fig.  III .14. The green dotted line represents the limit 
σϽ„ . The blue dots represent the calculated values in the LUT. Any indexed point 
within the blue area would directly access the LUT, whereas if the value is within the 
red zone, the output will always be zero.  

LUT access (blue area) is carried out following these equations:  
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The effective numeric values of the signals in this module, as well as their 
characteristics (i.e. attributes) are shown in Table III .2. 

Name Mode  Attributes  Minimum  Maximum  Increment  

x in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

x_mean in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

y in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

y_mean in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

p_norm out unsigned 0 ς ͺ  1 

Table III .2. Fitness calculation signal characteristics 

III.3  Particle Registers 

Particle states have to be stored during the filter ing operation. Therefore, it is 
necessary to introduce memory elements in the design. How can these memory 
elements be implemented? 

¶ Registers: flip-flops store the state variables. One of the most important 
advantages this approach has is that the memory access can be done in parallel 
(i.e. more than one particle state can be reached in one clock cycle), even 
though it can also be sequential (i.e. one particle state per clock cycle). 
However, resource utilization rates are high, thus havin g large area 
overheads.  

¶ RAM memory: random access memories can be used to store particle states. 
Data access can only be performed in a sequential manner (if the RAM 
memory has only one port), but the area overhead is smaller compared with 
the previous alternative.  

In the end, a RAM implementation was chosen, mainly due to the fact that RAM 
memories are easy to implement as BRAM (Block RAM) in Xilinx FPGAs. Therefore, 
this is the only module in the whole system that is technology dependent. BRAM 
inference in Xilinx tools requires specific syntactic constructions, especially when 
trying to describe dual port RAMs with two read/write ports in VHDL.  

VHDL coding of the state register module has been provided in both Fig.  III .15 (entity 
definitions) and Fig.  III .16 (architecture description). Note that in the entity, an 
attribute is defined in order to tell the synthesis tool that the module has to be inferred 
as a block RAM (in case it is not done automatically). Also, note that in the architecture 
description a shared variable is used. This is, generally speaking, a type of variable 
that cannot be synthesized. However, the VHDL code has to be written exactly like 
that so that the synthesis tool detects that a block RAM is being defined. This is the 
reason why this module is technology dependent (it depends on Xilinx FPGAs and 
synthesis tool, XST). 
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Fig.  III .15. State register VHDL entity 

--  Particle state memory  

--  Read- first Dual Port RAM  

--  Xilinx FPGA implementation target  

 

library  ieee ;  

use  ieee . std_logic_1164 . all ;  

use  ieee . numeric_std . all ;  

 

library  work ;  

use  work . all ;  

 

entity  state_register is  

 

  generic  

  (  

    --  Number of elements  

    ELEMENTS    :  natural  :=  1024 ;  

    --  Address port width in bits  

    ADDR_WIDTH  :  natural  :=  32 ;  

    --  Data resolution in bits  

    DATA_WIDTH  :  natural  :=  32 

  );  

   

  port   

  (  

    --  CLK signals  

    clk_a  :  in  std_logic ;   

    clk_b  :  in  std_logic ;      

    --  Control signals  

    en_a   :  in  std_logic ;  

    en_b   :  in  std_logic ;  

    we_a   :  in  std_logic ;  

    we_b   :  in  std_logic ;  

    --  Address ports  

    addr_a :  in  std_logic_vector ( ADDR_WIDTH- 1 downto  0);  

    addr_b :  in  std_logic_vector ( ADDR_WIDTH- 1 downto  0);  

    --  Input data ports  

    din_a  :  in  std_logic_vector ( DATA_WIDTH- 1 downto  0);  

    din_b  :  in  std_logic_vector ( DATA_WIDTH- 1 downto  0);  

    --  Output data ports  

    dout_a :  out  std_logic_vector ( DATA_WIDTH- 1 downto  0);  

    dout_b :  out  std_logic_vector ( DATA_WIDTH- 1 downto  0)  

  );  

   

  --  BRAM definitions  

  attribute  ram_style :  string ;  

  attribute  ram_style of  state_register :  entity  is  "block" ;  

   

end  state_register ;  
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Fig.  III .16. State register VHDL architecture 

architecture  rtl of  state_register is    

  --  Type definitions  

  type  RAM is  array  ( ELEMENTS- 1 downto  0)  of  

std_logic_vector ( DATA_WIDTH- 1 downto  0);  

  --  Shared variable definitions (TECHNOLOGY DEPENDENT)  

  shared  variable  state :  RAM :=  ( others  => ( others  => ' 0' ));  

begin  

 

  --  Particle state storage (Dual port RAM): PORTA  

  port_a :  process ( clk_a )    

    --  Variable definitions  

    variable  index_a :  integer  range  0 to  ELEMENTS- 1 :=  0;    

  begin  

    if  clk_a' event  and  clk_a = ' 1' then      

      --  Enable memory  

      if  en_a = ' 1' then        

        --  Index calculation  

        index_a :=  to_integer ( unsigned ( addr_a ));          

        --  Read operation PORTA  

        dout_a <= state ( index_a );          

        --  Write operation PORTA  

        if  we_a = ' 1' then            

          state ( index_a )  :=  din_a ;            

        end  if ;          

      end  if ;             

    end  if ;      

  end  process ;   

   

  --  Particle state storage (Dual port RAM): PORTB  

  port_b :  process ( clk_b )    

    --  Variable definitions  

    variable  index_b :  integer  range  0 to  ELEMENTS- 1 :=  0;    

  begin  

    if  clk_b' event  and  clk_b = ' 1' then      

      --  Enable memory  

      if  en_b = ' 1' then          

        --  Index calculation  

        index_b :=  to_integer ( unsigned ( addr_b ));          

        --  Read operation PORTA  

        dout_b <= state ( index_b );          

        --  Write operation PORTA  

        if  we_b = ' 1' then                    

          state ( index_b )  :=  din_b  

        end  if ;                        

      end  if ;             

    end  if ;      

  end  process ;  

 

end  rtl ;  
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The VHDL module symbol is shown in Fig.  III .17, and it has some parameters that are 
configurable.  

 

Fig.  III .17. State register symbol 

¶ ELEMENTS: number of available memory elements. 

¶ ADDR_WIDTH: address size in bits.  

¶ DATA_WIDTH: data size in bits.  

Since each particle has four different state variables plus its weight/fitness value, a 
higher-level module has been created using five instances of the state register. Thus, 
all particle information is stored within a single VHDL module.  

There are two particle registers in the Evolutionary Particle Filter, because at the end 
of each generation, during the survivor selection process, it is necessary to store a copy 
of each particle so as not to overwrite existing information. This will be explained with 
further details in forthcoming sections of this chapter.  

III.4  Process Model 

Importance sampling is carried out within this unit. As stated in previous sections, the 
importance sampling function is the process model.  Particle state is updated from a 
time step to the following one using the dynamic model presented in the introductory 
section of this chapter. This update process generates a new set of predi cted states (as 
in the prediction stage of the Kalman filter).  
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In order to implement this matrix -multiplication dynamic model in hardware, there 
were two main  different alternatives:  

¶ Parallel implementation: all four state variables are updated in the same clock 
cycle, using 16 multipliers.  

¶ Resource sharing implementation: using multiplexers and only four 
multipliers, but consuming more clock cycles. 

The target platform is a XUPV5 board, which features a Xilinx Virtex -5 XC5VLX110T 
FPGA. This FPGA has a limited number of hardware multiplier re sources, namely, 
only 64 DSP slices. Hence, every module with multiplications in this thesis has been 
implemented using the second approach, i.e. sharing hardware resources. 

The process model module architecture has been optimized in order to reduce the 
maximum delay, i.e. to increase the maximum allowable frequency , and has been 
presented in Fig.  III .18. In addition, the finite state machine that controls data 
transit ions and generates control signals has been included in Fig.  III .19. 

 

Fig.  III .18. Process model hardware architecture 
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Fig.  III .19. Process model control FSM 

The FSM works as follows: first, it remains waiting at rst state. When a rising edge 
appears in the control signal model_start, the FSM goes through all updating states, i.e. 
x_up, y_up, vx_up, and vy_up. To change from one state variable to the next one that 
has to be updated, it is absolutely necessary that a valid normal-distributed random 
number is available. Therefore, transitions between states depend on the signal 
randn_valid being high. If this condition is not satisfied, the FSM stops and remains in 
the same state. There is another extra state, called last, in which the FSM stops unless 
the input control signal model_start is low. This prevents the system from updating the 
same particle state twice instead of only once. In the final state transition, the output 
control signal model_end is set to high only one clock cycle. 

One of the most important disadvantages of this modu le is the latency. Since the state 
variable update process depends on valid random samples, this latency can have a 
huge impact in overall performance if it is not taken into account . In this thesis it has 
been, since the random number generator has no latency between normal samples. 
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The VHDL module symbol is shown in Fig.  III .20, and it has some parameters that are 
configurable.   

 

Fig.  III .20. Process model symbol 

¶ INT_PART: integer part size in bits.  

¶ DEC_PART: decimal part size in bits. 

¶ SIGMA_RATIO: ratio between the standard deviation in position and in 
velocity.  

¶ T: sampling time in the dynamic model.  

The dynamic matrix coefficients and the number of bits for the right shift operation 
are computed during the synthesis process (following the same procedure used in the 
fitness calculation unit). VHDL coding is shown in Fig.  III .21 and in Fig.  III .22. 

 

Fig.  III .21. Bit shift computation in VHDL 
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  --  Get shift value from sigma ratio  

  function  get_ratio ( ratio :  real )  return  natural  is  

    --  Variable definitions  

    variable  ratio_log :  natural ;  

  begin  

    --  Compute value  

    ratio_log :=  integer ( log2 ( ratio )  + 1.0 );  

    --  Return value  

    return  ratio_log ;  

  end  function ;  
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Fig.  III .22. Dynamic matrix generation in VHDL 

The effective numeric values of the signals in this module, as well as their 
characteristics (i.e. attributes) are shown in Table III .3. 

Name Mode  Attributes  Minimum  Maximum  Increment  

clk in  rising  0 1 - 

reset in  high  0 1 - 

x_1 in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

y_1 in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

vx_1 in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

vy_1 in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

randn in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

randn_valid  in - 0 1 - 

model_start in - 0 1 - 

x out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

y out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

vx out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

vy  out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

model_end out - 0 1 - 

Table III .3. Process model signal characteristics 

  --  Type definitions  

  type  dyn_matrix is  array ( 3 downto  0,  3 downto  0)  of  

std_logic_vector ( INT_PART+DEC_PART+1- 1 downto  0);  

   

  --  Function definitions  

  --  Obtain std_logic_vector matrix from real matrix  

  function  generate_matrix ( T :  real )  return  dyn_matrix is    

    --  Constant definitions  

    type  dyn_matrix_real is  array  ( 3 downto  0,  3 downto  0)  of  real ;  

    constant  a :  dyn_matrix_real :=  

      (  

        ( 1.0 ,  0.0 ,    T,  0.0 ),  

        ( 0.0 ,  1.0 ,  0.0 ,    T),  

        ( 0.0 ,  0.0 ,  1.0 ,  0.0 ),  

        ( 0.0 ,  0.0 ,  0.0 ,  1.0 )  

      );    

    variable  a_int :  dyn_matrix ;  

  begin    

    for  i in  3 downto  0 loop  

      for  j in  3 downto  0 loop        

        a_int ( i , j )  :=  

std_logic_vector ( to_signed ( integer ( real ( 2** DEC_PART)* a( i , j )), a_int ( i , j ) '

length));        

      end  loop ;  

    end  loop ;      

    --  Return value  

    return  a_int ;    

  end  function ;  
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III.5  Crossover Unit 

This hardware module performs the recombination operation in the evolutionary 
resampling stage. Crossover equations have been provided as a reminder. 

ὼ Ͻὼ ρ Ͻὼ

ὼ Ͻὼ ρ Ͻὼ
 

The implementation guidelines are exactly the same that were discussed in the 
previous section. In order to avoid excessive resource consumption rates, the module 
has been described as a resource-sharing architecture. The hardware architecture can 
be seen in Fig.  III .23. Note that the same multiplexed inputs (έὴ and έὴ) are used to 
generate two children (ὥόῲὥ and ὥόῲὦ). The control FSM for this particular module 
appears in Fig.  III .24. 

 

Fig.  III .23. Crossover unit hardware architecture 

ὥόῲὥ 

ὥόῲὦ 
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Fig.  III .24. Crossover unit control FSM 

This module operates similarly to the process model unit. Unless the input control 
signal, in this case cross_start goes high, the module does nothing. Once a rising edge 
has been detected in that control signal, there are two possible state transitions. If the 
uniform -distributed random number which is drawn is greater than the fixed 
crossover probability threshold, i.e. ὴ, the system goes to the state last. Otherwise, the 
next state is x_up, and clock cycle after clock cycle, the system performs the 
recombination of the four state variables. Once this has been finished, the system will 
step to the state last, setting the control signal cross_valid to high. Independently on 
how the last state is reached, the system will stop until the input control signal goes 
low. Only then will the system go to the initial state, setting the other output control 
signal, cross_end, to high for only one clock cycle. Once the system is in rst state, both 
output  control signals are set to low. These two outgoing control signals let the rest of 
the system know when the recombination has finished and whether there has been 
offspring generation or not.  Refer to the following sections for further information.  

Althoug h the system takes more than one clock cycle to finish the recombination 
algorithm, the latency is fixed, since it does not depend on the random number 
generation process (it is assumed that uniform random numbers are generated with a 
LFSR, thus having one sample per clock cycle).  
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The VHDL module symbol is shown in  Fig.  III .25, and it has some parameters that are 
configurable.   

 

Fig.  III .25. Crossover unit symbol 

¶ INT_PART: integer part size in bits.  

¶ DEC_PART: decimal part size in bits. 

¶ P_CROSS: crossover probability ὴ. 

The generic parameter P_CROSS is defined as a real number to represent a real value 
ranging from 0.0 to 1.0. However, real numbers cannot be synthesized. In order to 
overcome this problem, the crossover probability is computed (again) during the 
synthesis process, expressing it with the resolution given by the other generic 
parameters, specifically  DEC_PART. This conversion can be seen in Fig.  III .26. 

 

Fig.  III .26. Real to integer conversion in crossover probability threshold 
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  --  Constant definitions  

  constant  pc :  integer  :=  integer ( real ( 2** DEC_PART)* P_CROSS);  
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The effective numeric values of the signals in this module, as well as their 
characteristics (i.e. attributes) are shown in Table III .4. 

Name Mode  Attributes  Minimum  M aximum  Increment  

clk in  rising  0 1 - 

reset in  high  0 1 - 

x_1 in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

y_1 in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

vx_1 in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

vy_1 in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

x_2 in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

y_2 in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

vx_2 in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

vy_2 in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

rand in unsigned 0 ρ ς ͺ  ς ͺ  

cross_start in - 0 1 - 

x_a out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

y_a out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

vx_a out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

vy_a out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

x_b out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

y_b out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

vx_b out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

vy_b out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

cross_valid out - 0 1 - 

cross_end out - 0 1 - 

Table III .4. Crossover unit signal characteristics 

III.6  Mutation Unit 

The implementation of the second genetic operator in the evolutionary resampling 
stage will be explained in this section. Since there was not only one but two different 
operations (namely, random placement and local search), in this module there are two 
different data paths.  

The first data path generates a child using random placement; therefore, the following 
equation has been implemented in hardware: 

ὼ ὼ Ͻὼ ὼ  

The second data path creates a child using local placement, i.e. placing this child in a 
close environment (in the state space) of the parent. This operation is represented as 
the following equation:  

ὼ ὼ  
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Fig.  III .27. Mutation unit hardware architecture 

In order to perform both operations, the architecture that is shown in Fig.  III .27 has 
been proposed. By taking a look at this figure, it is possible to see the two different 
data paths that have been explained in the previous paragraphs. The random 
placement data path is the one on the left side, whereas the local search data path is 
located on the right side. The control logic decides whether to use the random 
placement child (ὥόῲὶὴ) or the local search one (ὥόῲὰί) with a control signal (άέὨὩ). 

The control FSM can be seen in Fig.  III .28. It is more complex than the control FSMs 
from both process model and crossover units. However, it shares common features 
with them. For instance, the capability of deciding whether the child  is valid or not, 
based upon a uniform random number comparison with a fixed threshold (exactly the 
same that happened in the crossover module), or the need for valid normal random 
numbers (as in the process model module). 

Note that, although the control l ogic is by far more complex than in the 
aforementioned modules, the data logic is simpler, since only one multiplier is needed, 
and only in one of the paths (random placement of the particle in the state space). 
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Fig.  III .28. Mutation unit control FSM 

The control strategy in this module can be analyzed as follows. As in the two previous 
modules, the mutation unit waits for a rising edge in the input control signal (in this 
case, it is the signal mut_start). If this condition is met, a uniform random number is 
drawn. Two possibilities can arise: on the one hand, the random number is less than 
the threshold; on the other hand, it is greater than the threshold. If it is greater than 
the threshold, the procedure is the same as in the crossover unit: the system goes to 
the state last. However, if the random number is less than the threshold, the internal 
control signal mode is set to high or low depending on the comparison of that random 
number and a second threshold. This comparison decides the type of mutation that 
will be performed on the parent. Then, the state machine starts generating each state 
variable offspring. Note that if the current mode is local search, i.e. άέὨὩᴂπᴂ, the 
system will h ave to wait for a valid normal -distributed random number to be able to 
get to the next state. On the contrary, if the mode is random placement, i.e. άέὨὩᴂρᴂ, 
the system does not have to wait for anything, and therefore the transition takes only 
one clock cycle to happen. Independently of the current mode, once the system has 
generated valid offspring for each state variable, the control signal mut_valid is set to 
high and the state last is reached. When the input control signal goes low, the system 
returns to the idle state, rst, setting the other control signal to high (one clock cycle). 
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The VHDL module symbol is shown in Fig.  III .29, and it has some parameters that are 
configurable.  

 

Fig.  III .29. Mutation unit symbol 

¶ INT_PART: integer part size in bits.  

¶ DEC_PART: decimal part size in bits. 

¶ SIGMA_RATIO: standard deviation ratio ὶ
 

. 

¶ P_MUT: mutation probability ὴ . 

¶ MUT_RATIO: mutation ratio ὶ. 

Following the same reasoning process that in the previous section, the probability 
thresholds are computed during the synthesis process, using the expressions provided 
in Fig.  III .30. In addition to that, since there are normal random numbers involved, 
the number of bits that suffer the right shift operation is computed the same way it 
was calculated in the process model unit (see Fig.  III .21). 

 

Fig.  III .30. Real to integer conversion in mutation unit thresholds 
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mut_start  
 

randn_valid  
 

mut_valid  
 

rand 
 

DEC_PART 

mut_end 
 

--  Constant definitions  

constant  pm       :  integer  :=  integer ( real ( 2** DEC_PART)* P_MUT);  

constant  mut_type :  integer  :=  integer ( real ( 2** DEC_PART)* P_MUT* MUT_RATIO);  
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The effective numeric values of the signals in this module, as well as their 
characteristics (i.e. attributes) are shown in Table III .5. 

Name Mode  Attributes  Minimum  Maximum  Increment  

clk in  rising  0 1 - 

reset in  high  0 1 - 

x_p in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

y_p in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

vx_p in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

vy_p in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

randn in signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

randn_valid  in - 0 1 - 

rand in unsigned 0 ρ ς ͺ  ς ͺ  

mut_start  in - 0 1 - 

x_c out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

y_c out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

vx_c out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

vy_c out signed ς ͺ  ς ͺ ς ͺ  ς ͺ  

mut_valid  out - 0 1 - 

mut_end out - 0 1 - 

Table III .5. Mutation unit signal characteristics 

III.7  Dividers 

At the very end of the particle filtering process, an estimation of the system state is 
generated. In order to compute each state variable estimated value, the following 
equation is used: 

ὼ ύϽὼ 

In this equation, ὼ represents the state variables of the particle i at time k, whereas ύ 
are the normalized weights of those particles. In order to avoid unnecessary 
computations of normalized values, this process is carried out at the estimation stage 
of the Evolutionary  Particle Filter.  

ὼ ύϽὼ
ВὪϽὼ

ВὪ
 

This last equation represents the new problem that needs to be solved: a division. Note 

that each normalized weight has been expressed as ύ
В

, where Ὢ represents the 

output values of the fitness calculation module. After searching through the literature, 
the division algorithm that has been selected and implemented is the radix -2 non-
restoring division algorithm  that was found in [5]. 
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Radix-2 non restoring division algorithm can be explained as follows. First, consider 
the operation we are trying to solve: the division.  

ὲόά ήϽὨὩὲὶ 

The last formula represents a common division, where num represents the numerator, 
den is the denominator, q is the quotient and r is the remainder.  

The hardware architecture that has been used can be seen in Fig.  III .31. It requires one 
register to store the denominator, which is called inc, a shift register, which is named 
op_register, and an adder/substractor.   

 

Fig.  III .31. Divider hardware architecture 

Having  said that, let us focus on the algorithm itself, which has been illustrated in the 
following figure ( Fig.  III .32). 

 

Fig.  III .32. Radix-2 non-restoring division algorithm 

This algorithm works well if both num and den are unsigned integers, but some 
modifications have to be made in order to adapt the algorithm to signed integers (the 
Evolutionary Particle Filter state variables are signed integer, therefore this is 
mandatory). These changes have been included within the system control FSM, which 
can be seen in Fig.  III .33. The signs are computed before the aforementioned algorithm 
starts working with the absolute values of the operands. Once the algorithm has 
finished its execution, the quotient and remainder signs are modified with the 
previous knowledge of the operand signs.  

LOW(op_reg)[0]  

shift  

HIGH  LOW 

inc 

op_reg 

LOW( op_reg )  = num;  

HIGH( op_reg )  = 0;  

inc = den ;  

 

for ( int  i = 0;  i < N_BITS ;  i ++)  

{  

  shift_left ( op_reg , 1);  

  ( HIGH( op_reg )  < 0)  ? ( HIGH( op_reg )  += inc )  :  ( HIGH( op_reg )  - = inc );    

  ( HIGH( op_reg )  < 0)  ? ( LOW( op_reg )[ 0]  = 0)  :  ( LOW( op_reg )[ 0]  = 1);  

}  

 

q = LOW( op_reg );  

( HIGH( op_reg )  < 0)  ? ( r = HIGH( op_reg )  + inc )  :  ( r = HIGH( op_reg ));  
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Fig.  III .33. Divider control FSM 

The finite state machine used to control the system has only three states. The first one 
represents the idle mode of the divider unit. When there is a rising edge in the control 
signal div_start, the signs of the quotient and the remainder are calculated, and the 
input numbers are stored in its respective registers (inc, op_reg). Then, the algorithm 
computes the division while the FSM remains in the state division. This process takes 
N_BITS cycles, being N_BITS the number of bits each operand has. Then, the system 
goes to a waiting state until the input control signal goes low. At this moment, the 
output cont rol signal is set to high for one clock cycle, and both the quotient and the 
remainder are registered as output values.  

The VHDL module symbol is shown in Fig.  III .34, and it has some parameters that are 
configurable.  

 

Fig.  III .34. Divider symbol 

¶ N_BITS: data signal resolution in bits. 

clk 

reset 

q 
 

N_BITS 

div_end  
 

r 
 

N_BITS 
num  

N_BITS 

div_start  
 

den 
 

N_BITS 
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The effective numeric values of the signals in this module, as well as their 
characteristics (i.e. attributes) are shown in Table III .6. 

Name Mode  Attributes  Minimum  Maximum  Increment  

clk in  rising  0 1 - 

reset in  high  0 1 - 

num in signed ςͺ  ςͺ ρ ρ 

den in signed ςͺ  ςͺ ρ ρ 

div_start  in - 0 1 - 

q out signed ςͺ  ςͺ ρ ρ 

r out signed ςͺ  ςͺ ρ ρ 

div_end  out - 0 1 - 

Table III .6. Divider signal characteristics 

III.8  Additional Logic 

In the previous section, the divider unit was explained. Nevertheless, how are the 
inputs of that unit generated?  Additional hardware resources used in this thesis will 
be presented in this section. In particular, multiply and accumulate (MAC) units and 
accumulators will be reviewed.  

 

Fig.  III .35. State variable MAC unit and fitness accumulator 

In Fig.  III .35, the hardware that has been implemented to perform the operations of 
multiply and accumulate on the state variables and accumulate on the fitness is shown.  

ὼ ύϽὼ
ВὪϽὼ

ВὪ
 

Therefore, the upper component performs the operation ВὪϽὼ, whereas the lower 
component is in charge of computing ВὪ. Since these operations use registers, it is 
important to select a particle number that makes the module feasible. Excessive area 
overhead could be generated if this is not taken into account. 

 D 

ὼ 

Ὢ 

ὼ  

D Ὢ ὪὭὸ 
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III.9  Process Scheduling and System Control 

Complex systems such as the Evolutionary Particle Filtering require large control 
FSMs in order to work properly. In this last section, the control logic that connects and 
rules the operating conditions is presented. 

 

Fig.  III .36. Process Scheduler 

The main control is represented in Fig.  III .36. In this figure, some control signals have 
been omitted for the sake of simplicity. However, all possible state transitions, as well 
as their conditions have been included. 
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Since the system is very complex, local control strategies have also been implemented. 
There are eight different control submodules, each one with a specific functionality:  

¶ Initial particle random placement. 

¶ Process model control: interface with the process model unit. 

¶ Particle sort algorithm: bubble sort algorithm to sort particles according to 
their fitness values. This algorithm is very slow with large population sizes, 
and in future works might be revised in order to increase overall system 
performance. 

¶ Selection algorithm: performs Stochastic Universal Sampling.  

¶ Crossover control: interface with the crossover unit.  

¶ Mutation control: interface with the mutation unit.  

¶ Accumulation: controls the MAC an accumulators , presented in the previous 
section. 

¶ Save particle state: stores intermediate particle states (after importance 
sampling, between generations, etc.) for representation purposes. 

The FSM in Fig.  III .36 generates the necessary control signals for the control 
submodules, whereas more specific control signals (such as memory access signals) 
are generated inside the control submodules. Since the hardware modules can operate 
only with  one particle (or two, in the case of the crossover unit), the control 
submodules are in charge of requesting data from the particle registers and then 
passing those data so that processing can be carried out. For the sake of brevity, these 
control submodules, i.e. local FSMs, have not been included in this document.  

In the Particle Registers section of this chapter, some references were made to the fact 
that at least two memories for each state variable. There are two obvious reasons for 
this: on the one hand, the aforementioned overwriting problem when passing from 
one generation to the next one. With the implemented control strategy, particle states 
would suffer from data consistency  errors were it not for the  additional memories. On 
the other hand, these additional memories are important because they store the 
intermediate particle states. Moreover, since the particle registers are described as dual 
port RAMs, there is an extra interface available for data transactions. This advantage 
will be used in one of the testing platforms. Refer to the following chapter for further 
details on the usage of additional particle registers. 

As far as this thesis is concerned, the process scheduling has been designed as 
sequential, i.e. each unit performs its function and then the next one, and so on. 
Therefore, full parallelism has not been accomplished (e.g. process model, crossover 
and mutation units processing data in parallel) . This will be documented in the future 
lines sections of the following chapter.  
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Results and Conclusions 

I. Evolutionary Resampling Stage 

Since the evolutionary resampling stage is one of the main contributions of this thesis, 
in this section a thorough analysis of the algorithm itself  will be presented. 

In order to validate  the evolutionary resampling algorithm, it has been implemented 
in MATLAB. It is common to see validation examples in the literature in which the 
univariate non -stationary growth model is used as the process model equation.  This 
is mainly due to the fact that it is highly non -linear, therefore making it  suitable for  
testing any estimation tool which handles this specific type of systems (i.e. non-linear 
systems). Moreover, the measurement model is quadratic, thus conferring more 
complexity and uncertainty to the filtering process.  

ὼ ὼ
ρςϽὼ

ρ ὼ
χϽÃÏÓρȢςϽὯ ρ   

ᾀ
ὼ

ςπ
•  

 ὔͯπȟ„  • ὔͯπȟ„  

With this model, different tests have been proposed and performed. First, the 
Evolutionary Particle Filter was compared with the basic particle filter: the Bootstrap 
Filter. The aim of this test was to evaluate whether the proposed algorithm 
outperformed the Bootstrap Filter or not. The results of this test can be seen in both 
Fig.  I.1 and Fig.  I.2. In the first figure, the tracking performance is shown. Note that 
both algorithm s provide accurate estimations. However, the Evolutionary Particle 
Filter provides , generally speaking, less estimation errors (computed as mean square 
errors), as it is shown in the second figure. In some time steps, especially in those of 
the beginning, the EPF estimation error has larger spikes than the Bootstrap Filter. 
Nevertheless, the rest of the spikes are, in average, smaller. 

Another important test was carried out in order to measure the robustness of the 
system. Introducing large modifications in the dynamic evolution of the real system, 
the Bootstrap Filter lost the target trajectory, never to return , whereas the EPF lost the 
target and then returned to the real estimation  value (since mutation operations 
generated children in the environment of the real state, therefore evolving the 
population to that state space region). The robustness of the system can be seen in Fig.  
I.3, where from ὸ ςπ to ὸ τπ, a linear model equation (ὼ ὼ χ) is used 
instead of the univariate non -stationary growth model.  In a real-world situation, this 
divergence from the theoreti cal model could be due to inaccurate modeling strategies, 
i.e. the process model does not represent the actual behavior of the real system. 
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Fig.  I.1. EPF vs. Bootstrap Filter: tracking performance 

 

Fig.  I.2. EPF vs. Bootstrap Filter: estimation error 
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Fig.  I.3. EPF vs. Bootstrap Filter: inaccurate process modeling 

The last test that has been designed is focused on checking whether this resampling 
strategy can be considered optimal, rather than suboptimal. If the resampling stage 
algorithm is optimal, the sample impoverishment problem will be mitigated. 
Moreover, the other main problem of particle filtering, i.e. particle degeneracy, should 
not be present, since there is a resampling stage. 

As in the previous tests, a comparison between the Bootstrap Filter and the proposed 
Evolutionary Particle Filter has been made. The effects of suboptimal resampling 
strategies, which have already been discussed in this thesis, are shown in Fig.  I.4. The 
resampling stage in the Bootstrap Filter decreases particle diversity. However, the 
results of the EPF (shown in Fig.  I.5) prove that genetic operations help keeping the 
population diversity. The posterior distribution still looks like a probability density 
function after resampling has been performed, as opposed to the Bootstrap Filter. The 
idea is that the particles òmigrateó towards higher probability regions, instead of just 
being replaced or copied (which is basically what the suboptimal resampling stage in 
the Bootstrap Filter does).  

The Evolutionary Parti cle Filter used in all these tests has been configured with 200 
particles, „ „ ς, and with a limit of only two generations in the evolutionary 
algorithm.  Each generation, new children are generated using 10 parents, and with 
ὴ πȢψ and ὴ πȢρ being the genetic operations probabilities. The generation limit 
has been established in order to further mitigate sample impoverishment.  



76 Results and Conclusions 

Hardware-Based Particle Filter with Evolutionary Resampling Stage  

 

Fig.  I.4. Bootstrap Filter: diversity loss due to suboptimal resampling 

 

Fig.  I.5. EPF: genetic operators keep population diversity 
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II.  Random Number Generator 

The proposed random number generator architecture has to be validated, especially 
the normal-distributed output.  In this section, statistical analysis (e.g. histograms, 
autocorrelation and partial correlation functions)  are performed on the output signals 
in order to check the functionality of the hardware module.  The module configuration 
that has been used is the following one:  

¶ Number of samples: statistical analysis require large sampling sizes in order 
not to be biased. Therefore, in these tests the total number of samples is set to 
one million.  

¶ Data resolution: the uniform -distributed data output has a resolution  of 8 bits 
(unsigned integer, 8-bit decimal part), whereas the normal -distributed output 
has a resolution of 19 bits (2õs complement signed integer, 10-bit integer part, 
8-bit decimal part).  

¶ Probability density function parameters: based upon the definitio ns of the 
previous paragraph, the uniform -distributed output will generate a uniform 
distribution Ὗπȟρ. The normal distribution parameters are specified in the 
generic section of the hardware module. For testing purposes only, these 
parameters have been set as follows: ‘ π; „ ςπ. 

 

Fig.  II .1. RNG output histograms 
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The first step in the validation process requires the histograms from both outputs to 
be computed. Therefore, after the simulation has finished, the data sets are processed 
with MATLAB in order to obtain their histograms. The outcome of these operations is 
shown in Fig.  II .1. 

Let us focus on the normal-distributed output first. Using a distribution -fitting  tool, 
e.g. MATLAB integrated statistics toolbox, the aim is to find the normal distribution 
that best fits (i.e. represents) the data set. In Fig.  II .2 it is possible to see that the data 
set looks like a normal distribution, a nd that the distribution -fitting tool provides a 
normal distribution that almost fits this data set. Note that some values are over the 
fitted normal distribution, whereas others are below. This phenomenon is due to the 
limited precision in output data sig nals. 

 

Fig.  II .2. RNG normal output distribution fitting 

In Fig.  II .3, the parameters of the estimated fitting normal distribution are shown. 
Note that these values correspond with the specifications that were set at the 
beginning of this section. 

 

Fig.  II .3. RNG normal output distribution fitting values 
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Fig.  II .4. RNG normal output autocorrelation (left) and partial correlation (right) functions 

 

Fig.  II .5. RNG normal output QQ Plot 
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So far, the configurable random number generator generates normal-distributed 
random samples with user -defined mean and standard deviation values. However, 
are these random samples good enough? The Evolutionary Particle Filter requires 
white noise signals, i.e. a stream of uncorrelated random samples with zero mean and 
finite standard deviation.  Therefore, some tests have to be carried out in order to 
establish whether the normal  output provi des white noise signals or not. Correlation 
between samples can be analyzed using autocorrelation and partial correlation 
functions. This is what has been presented in Fig.  II .4. This output has been confirmed 
as Gaussian (Fig.  II .2). However, further tests can be done. For instance, in Fig.  II .5, 
the QQ plot of the data set is shown. This analysis compares two distributions; in this 
case, the one defined by a data set, and the reference normal distribution (computed 
with the distribution fitting tool).  Note that both distributions are very similar, except 
in the edges. Again, this is a natural consequence of the limited data precision in the 
system, which is due to the hardware implementation.  

Correlation analysis have also been performed on the other output, the uniform 
distributed data output. Results from this test have been provided in Fig.  II .6. As it 
can be seen, random samples drawn from this output are not correlated at all.  

 

Fig.  II .6. RNG uniform output autocorrelation (left) and partial correlation (right) functions 

All this validation tests have been carried out through simulation, where the data were 
written to text files from the testbench itself. These text files were then loaded in 
MATLAB in order to perform the required computations.  
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III.  Fitness Calculation 

In this section, the functional validation of the fitness calculation unit is presented. The 
module configuration that has been used is the following one:  

¶ Input data resolution: 19 bits (2õs complement signed integer, 10-bit integer 
part, 8-bit decimal part).  

¶ Mean values are introduced into the module using external signals, i.e. the 
specific input ports x_mean and y_mean. 

¶ Standard deviations: „ „ ρπ. 

¶ Look-up table elements: the LUT has been built using a 32x32 matrix (Fig.  
III .1). 

The resulting LUT mapping can be seen in Fig.  III .2. Note that the resolution of the 
look-up table has been increased, since only first -quadrant points are computed , as 
discussed in the previous chapter. With this LUT, and setting the external  signals so 
that  ‘ ρπ and  ‘ υπ, the fitness values of the input signals can be seen in Fig.  

III .3. Two-dimensional representations can also be found in Fig.  III .4 and Fig.  III .5. 
Note that he peak fitness values are obtained when  ὼ ‘ and ώ ‘. Also notice 

that all four quadrants have been successfully reconstructed. 

 

Fig.  III .1. LUT step values 
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Fig.  III .2. Fitness calculation LUT 

 

Fig.  III .3. Normal PDF 3D computation using the LUT 
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Fig.  III .4. Normal PDF computation (xz-axis) 

 

Fig.  III .5. Normal PDF computation (yz-axis) 
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In Fig.  III .4 and in Fig.  III .5 it is also possible to see the other proposed enhancement: 
the effective input data size. Every point that falls outside the circle defined by σϽ„  
has a fitness value of zero. 

As in the previous section, this results have been obtained from simulations. Fitness 
values are written to a text file from the testbench, and then MATLAB computes the 
figures. 

IV.  Experimental Methodologies 

The Evolutionary Particle Filter has been implemented in hardware using two 
different methodologies.  

¶ Hardware In the Loop (HIL): the FPGA board is used as a coprocessor. The 
main processor is inside a personal computer, and performs the preprocessing 
operations on the input image. 

¶ System on Programmable Chip (SoPC): the EPF is included as a peripheral in 
an embedded system (which also has a microprocessor) inside the FPGA. In 
this approach, there is no preprocessing stage, since it has yet to be developed. 

These two approaches are described in more detail in the forthcoming sections of this 
chapter. Furthermore, the reasons for including both strategies will be presented. 

IV.1 Hardware In the Loop (HIL) 

Although the Evolutionary Particle Filter is a complex system, it is only a module 
within a larger and even more complex system. However, the design of the rest of the 
processing system lies out of the scope of this thesis. Therefore, hardware-in-the-loop 
simulations seem a feasible alternative so that the whole application can be tested and 
validated .  

The HIL validation platform that has been used appears in Fig.  IV .1, and consists of a 
personal computer, a USB webcam and a FPGA board featuring a Xilinx Virtex-5. 

 

Fig.  IV.1. HIL validation platform setup 
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