

Universidad Politécnica de Madrid

Escuela Técnica Superior de Ingenieros Industriales

Departamento de Automática, Ingeniería Electrónica e Informática
 Industrial

Master on Industrial Electronics

CPU/GPGPU/HW comparison of
an Eigenfaces face recognition

system

Author: Julio Camarero Mateo

Advisor: Eduardo de la Torre Arnanz

March 2014

Master Thesis

Agradecimientos 3

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Quiero agradecer a todos aquellos que me habéis acompañado durante este tiempo,

porque este trabajo ha sido posible por vosotros y es tan vuestro como mío.

Este trabajo está dedicado a mi madre, que me enseña cada día a luchar por lo que

uno quiere en la vida. Sigue haciéndolo y sigue tan valiente como hasta ahora.

A mi padre, mi hermana Elena, Laura, Rubén y mis tíos, por el buen equipo que

formamos y porque sin vosotros no podría haber terminado este último paso.

A Edu, Juan, Andrés y Mora, por haberme guiado sabiamente durante todo este

tiempo.

A Laura de nuevo, porque no sólo me renuevas la alegría cada día, sino que haces

más pequeñas mis cargas.

A los compañeros del máster Ángel, Alfonso, Filip, Dave y los profesores del CEI,

que habéis hecho que este año sea divertido a la vez que aprendía con vosotros.

A los compañeros de comedor Aledo, Giuliano, Yann, Mavi, Gabriel, y Fermín, que

siempre enriquecéis la comida con inquietantes divagaciones intelectuales.

A los adictos al café, Portilla, Víctor, Chema, Dani Martel y los ya citados, porque

pocos cafés me tomaré tan interesantes, a la par que arriesgados, como los del

almacén.

A Blanca, Fede, Santiago y todos a los que en algún momento me habéis sufrido,

tenéis un gran futuro por delante, ánimo.

A Álvaro, Mónica, David, Peña, Jorge, Airán y todos los demás compañeros del CEI,

ha sido un honor el tiempo pasado con vosotros.

A todos mis amigos de siempre, que me encanta que sean como son y que son los

mejores amigos del mundo, no les cambiaría por nada.

A todos aquellos que me dejo en el tintero… ¡MUCHAS GRACIAS!

Un nuevo horizonte se abre lleno de posibilidades.

Table of Contents 5

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Table of Contents

Chapter 1. INTRODUCTION ... 9

I. Security and Image Processing ... 9

II. WSN in High Performance Applications .. 11

III. Motivation and Aim of the Project ... 12

IV. Framework of the Project .. 13

IV.1 RUNNER Project .. 13

IV.2 FastCUDA Tool Flow ... 16

V. Document Structure ... 18

Chapter 2. GENERAL CONCEPTS AND STATE OF THE ART 19

I. Recognition, Detection and Identification .. 19

II. State of Solutions .. 22

III. Eigenfaces Algorithm Basics ... 24

IV. Starting Point ... 29

Chapter 3. REQUIREMENTS AND IMPLEMENTATIONS OF
RECOGNITION SYSTEM ... 33

I. Requirements for the System Design ... 33

I.1 Related with RUNNER Project: .. 33

I.2 Related with FastCUDA Project: .. 34

I.3 Additional Purposes: ... 35

II. MATLAB as Proof of Concept .. 35

II.1 From a Set of Images to the Database of Identities 36

II.2 Fade Faces .. 42

II.3 Rebuilding External Faces ... 45

III. C Code Development ... 47

6 Table of content

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

III.1 Commands and RAM Functions .. 47

III.2 SDK Recognition Functions .. 52

III.3 Towards CUDA .. 54

IV. Hardware Versions ... 54

IV.1 Registered Reconfigurable Version .. 55

IV.2 BRAM Memory Version .. 57

Chapter 4. VERIFICATION .. 63

I. Scripts in MATLAB .. 63

II. Image Results .. 66

III. Simulations .. 67

IV. ChipScope Analyzer ... 72

V. Nao Robot .. 74

Chapter 5. COMPARISON BETWEEN ALTERNATIVES AND
FURTHER WORK.. 77

I. Comparison between Different Alternatives .. 77

II. Flexibility of the BRAM Version ... 79

II.1 More DSPs (Multipliers) .. 79

II.2 Less BRAM Utilization .. 80

III. Face Detection Incorporation .. 81

IV. FastCUDA Tool Work .. 82

Chapter 6. CONCLUSIONS AND FUTURE WORK 85

I. Conclusions ... 86

II. Future Work .. 87

III. Publications and Presentations ... 88

IV. Dissemination .. 89

REFERENCES .. 91

Annex 1. Table of Identities .. 95

Table of Contents 7

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Chapter 1 Introduction 9

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Chapter 1. INTRODUCTION

During the last fifteen years, many electronic devices have been provided with
powerful processing units, while at the same time they included power consumption
reduction techniques as complex as having variable clock frequency or the ability to
enable and disable different blocks of resources depending on the demanded
processing load. This fact opens a new outlook in the range of applications one
device is able to manage, due to the improvement in efficiency while handling more
data concurrently. In order to illustrate this assertion, it is sufficient to think about
portable devices such as notebooks [1], with quad cores and GPGPUs inside, or even
novel smartphones that can have up to eight cores and a GPU in a single chip [2], [3].

Taking into account these new characteristics, it could be safe to say that it has
emerged thereby the possibility of accomplishing very demanding tasks that were
previously unfeasible. Due to this evolution, it is possible to find multimedia
applications embedded in surveillance systems, notebooks or even smartphones.
One example of this is the face detection applications in the software of digital
cameras.

In this Master Thesis one face recognition system is studied in another type of
smart devices: a Wireless Sensor Networks (WSN) platform. It will be implemented
in hardware in an FPGA, in software in an embedded microprocessor, and compared
with the results of two C++ and CUDA (Compute Unified Device Architecture)
programs in a laptop and in a desktop computer. The advantages and disadvantages
in terms of performance and power consumption of every solution will be seen and
compared.

I. Security and Image Processing

Nowadays, security is a major concern not only in public spaces, such as airports
or shopping centres, but also in different scopes of applicability like surveillance of
private properties or pass-permission for an enclosure. On top of that is the trend for
growing countries towards adopting the latest models of development in cities [4].
The generalization of the Smart City goal, together with the Internet of Things,
comes up with the utilization of distributed systems in almost every place where
humans can carry out any economic or social activity. Common traffic lights are

10

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

endowed with new functionalities, temperature sensors, cameras and even
communication capabilities in order to send the information for management and
future use. This research work is focused in the area of security using video cameras,
and more specifically in the analysis and comparison of alternatives for processing
images with different platforms.

With the purpose of supporting the network, some authors [5] have proposed to
take advantage of cooperative users and use portable devices as anonymous routers
or even distributed processors of the Smart City. While this can be helpful in terms of
saving resources, it could also become quite risky because of the data exposure
endured during the process [6]. Nevertheless, Wireless Sensor Nodes are good
candidates at this scenario and security is a well-known issue studied by many
authors since the popularization of these devices [7], [8]. Precisely, one of the main
contributions achieved in this Master Thesis is developed on the WSN designed at
Centre of Industrial Electronics (CEI) called HiReCookie, which is described in
Chapter 2.IV.

In the field of subjects’ identification, biometric modalities such as fingerprint
acquisition, iris analysis or ID card verification can be used. However, the face
recognition technique is not only nonintrusive and natural for humans, but also can
be captured at a distance and in an undercover manner. According to Heitmeyer et
al. [9], facial features achieved the best results when identifying passengers in an
airport or station. In Figure 1 an example of this scenario is shown.

Figure 1 Cooperative identification system in an airport or company.

But image processing is usually considered as a very time and resource
consuming task due to the large amount of managed data. In order to cope with this
task, different approaches have been used, from commercial software products sold
by companies, thought to be running in personal computers in communication with

Chapter 1 Introduction 11

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

IP cameras [10], to ASIC solutions. More information related with this approach will
be given in Chapter 2.II.

It is worth stressing that, on the one hand, image processing is a huge field that
has been broadly exploited with usual microprocessors in software, DSPs and even
in the last years using novel techniques of processing images with FPGAs [11] and
parallel computing with GPUs. On the other hand, Visual Wireless Sensor Networks
have acquired enough computing power to deal with multimedia applications, and
there are, for instance, studies related with the optimization of power consumption
[12] or data encoding [13].

Nevertheless, what is actually an original contribution in this Master Thesis is the
design of an image processing block in hardware for an FPGA-based WSN node.
Due to the high performance characteristics of this WSN platform, a brief overview
of possible applications is shown in the next section.

II. WSN in High Performance Applications

WSNs have been regarded as smart sensors based on low power nodes, with
microprocessors of limited data processing capabilities. Moreover, they are designed
in order to cope with scenarios where human intervention is not possible or so
frequent, as well as limited maintenance and low profile in the amount of
measurements and communications. In the end, power consumption is crucial
because the operability depends on a battery, which obviously provides a limited
amount of energy.

However, the tendency is changing towards having more powerful processing
units, mainly due to new requirements in terms of security, speed or volume of data
demanded. Fortunately, it has been demonstrated [14] that it is feasible to save
energy with FPGA-based WSNs, by computing information as fast as possible and
then switching off, or sending all the expendable modules in the platform to deep
power saving mode.

Figure 2 Power consumption profile comparison between a microprocessor and an FPGA.

12

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

These techniques have twofold benefits; they not only make possible to cover a
wide variety of new applications, but also allow energy to be managed at the same
time in a more efficient manner. Additionally, it could be interesting to take
advantage of already proposed schemes of low-power image compression in WSNs
[15]. Nevertheless as it will be seen, in the RUNNER project any image exchange is
avoided, returning minimal information after a request.

One example of feasibility study for detecting humans with a WSN, in a robust
and efficient manner was carried out by H. Fu et al. [16]. Although the research work
discusses different algorithms for detecting humans, it seems to be proven only in a
personal computer, while the purpose of this Master Thesis would be to comprise a
real implementation in a WSN also tested in a real environment.

In [17], authors deployed a complete surveillance system based on MICA2 nodes,
which have as high performance microprocessor an Atmega 128L. In this work,
motion and magnet sensors are used instead of cameras, and the main contribution
is made in the communication process.

Environmental care and even industrial monitoring could make the most of high
performance solutions with hybrid platforms like the ones proposed by Portilla [18]
or Latha [19]. When certain sensor, such as light, proximity or pressure detect a risky
situation, it is possible to have extra-processing capacity by activating a coprocessor.
Some possible tasks can start being encrypted and become more secure during
communication, start computing multimedia data or achieve the results faster or in a
more complex manner.

Accordingly with this framework, in Centre of Industrial Electronics was
designed a novel WSN node architecture called HiReCookie. It will be the hardware
platform for this Master Thesis and more details will be given in Chapter 2.IV.

As it has been shown, in this research work it is possible to take advantage of the
high processing capabilities and energy saving strategies of FPGAs, in order to
achieve the best efficiency for a WSN in the process of computing images. In the next
section the motivation and the framework of the project will be exposed.

III. Motivation and Aim of the Project

The motivation of this research work is dual: on the one hand, it pursuits the
realization of a fully functional face recognition application in a high performance
WSN platform; on the other hand, it encompasses the study of different alternatives
for achieving that and its features and performance.

The main goals of this Master Thesis are listed below:

Chapter 1 Introduction 13

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

 Develop a first approach of a face identification algorithm and look into some
other possibilities and extensions.

 Apply the acquired knowledge on behalf of designing the first software version
of the algorithm in the HiReCookie platform.

 Create a hardware reconfigurable peripheral; this block will be used in the
RUNNER project.

 Verify with automatic tools the results in every solution, comparing them with a
Golden Reference.

 Explore how the FastCUDA approach, which facilitates the design of such HW
accelerators, would make easier to achieve future solutions for similar cases.

Due to the direct implication of this Master Thesis regarding RUNNER and the
proximity to FastCUDA, both projects are introduced in the following section.

IV. Framework of the Project

The results of this research work have supposed a great progress for two
European projects, RUNNER and FastCUDA. The participation of the CEI in
RUNNER started with the final degree project of the same author of this Master
Thesis [20], and it was the initial motivation of the present work. Furthermore, due to
the collaboration with colleagues on the second project, it became possible to enrich
the range covered by the study, by taking into account the FastCUDA strategy.
Hence, brief introductions for each one of the mentioned projects are shown below.

IV.1 The RUNNER Project

RUNNER aims to provide an innovative infrastructure, to be exploited in the
creation of highly autonomous robots. It utilises high-end reconfigurable devices, in
order to allow extremely high performance and power-efficient processing, when
implementing 3D sensing/matching schemes.

Going into more detail, in the general definition of a robot, Sense-Plan-Act, the
sense-part requires a highly efficient and detailed perception. The most important
challenges for autonomous and effective robots in automatic environment are the
capacity of seeing, understanding and interacting with a three-dimensional real
world. Since it is not a coincidence that the visual cortex of the human brain is the
largest sensory part of the brain, in order to obtain a high performance 3D-
perception system for a robot, a significant amount of parallel computations are
required. Given the availability of image sensors with very high performance at a

14

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

low cost, the challenge is now to create a low cost, high performance Artificial Visual
Cortex. This vision system will perform all the required calculus of the environment,
keeping the central processor free of any visual computation, with some simple
messages for the indispensable interchange of information.

The problem domain of autonomous robotics comprises two major tasks with
different key aspects. The first one covers exploration issues while fast and accurate
matching algorithms are taking part; the second task includes the navigation in
known and unknown terrains, where the real time response takes precedence over
the quality of the numbers.

Detecting and recognizing an object from a video input turns out to be an issue
that requires great precision. The problem stems from the fact that a single object can
be viewed from an infinite number of ways. By rotating, obscuring, or scaling a
single object, one can create multiple representations of an object - which makes the
problem of matching the object to a database of objects very difficult. Depending on
the organization of the database, the problem expands either linearly or
exponentially whenever there are numerous objects that should be identified
simultaneously.

The Real-time 3D computation of the scene in the moving direction of a robot is
required to ensure obstacle avoidance, whereas the precision is secondary. One
possible method of navigation is to use stereo-vision algorithms in order to know
how far or close objects are located in the environment. Such a challenge could only
be achieved by the utilization of something else than one camera; it could be one
camera and a radar or sonar system, a 3D vision camera, or as it is proposed in
RUNNER, two cameras, in which the distance and the focus angle are controllable.

RUNNER aims to create a framework in which highly autonomous Robots with
much better perception than the existing solutions will be based. This innovative
infrastructure will utilize state-of-the-art reconfigurable devices (FPGAs), which are
well known for allowing extremely higher performance and power-efficient
processing when implementing data manipulation methods such as 3D
sensing/matching schemes as well as template and feature-based object recognition
algorithms. They will be partially reconfigured on run-time either remotely or
autonomously. In order to accomplish that, the robotics management scheme will
provide the mechanisms to alter the configuration of the robots’ devices to support
different vision and/or object recognition schemes and/or different functionality. In
the general case, the robot itself will be able to monitor the environment and change
its configuration providing an extremely flexible environment. By altering the
functions executed on the reconfigurable device in real-time, given the running
operational conditions, the features versus performance trade-off will be very close
to optimum at any point in time.

Chapter 1 Introduction 15

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

In general, the system developed within RUNNER takes advantage of the much
higher processing power offered by the reconfigurable devices, when compared with
the general purpose CPUs, and the partial real-time reconfiguration feature of the
state-of-the-art reconfigurable devices, that will allow it to alter the processing tasks
according to the environment of the robot. Moreover, the reconfiguration feature of
the FPGAs can also be used for decreasing the overall power consumption, as well as
for increasing the fault tolerance. Dynamic reconfiguration in the former case can be
done while the remaining processes of the chip continue to operate. It would be
possible to change the algorithm, which is executed on the chip, among several
candidates, without having the need for a large part to simultaneously run all
different algorithms. What is more, even in the presence of permanent errors, a
design can be placed on a different part of the FPGA while the rest continues to
operate, achieving the desired fault tolerance as a result.

More precisely, the role of the Centre of Industrial Electronics in this work will be
to design and implement modules supporting very high rates by taking full
advantage of the high processing power provided by the high-end FPGAs. The first
one is the face recognition algorithm called Eigenfaces algorithm, described in this
Master Thesis, while the second one is the Stereo Matching Algorithm implemented
by Federico Pérez in his final degree project. This work will be tested in the
autonomous robot Nao – shown in Figure 3.

Figure 3 Robot Nao, in charge of testing RUNNER results.

The ultimate objective of RUNNER is to deliver a reconfigurable prototype with
excessive cross-domain applicability. In RUNNER, we believe that in a few years
there would be millions of robots in various application areas that will all navigate in
an autonomous manner based on 3D video capture; such robots can be efficiently

16

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

and inexpensively built based on the provided innovative highly flexible
infrastructure.

IV.2 The FastCUDA Tool Flow

The increased needs of today’s market are causing an exponential growth of the
efforts required by hardware designers and software developers. Europe is at the
leading edge in wireless, multimedia, telecom and automotive electronic systems.
However, as global market competition is increasing and as new generations of
intelligent and high performance digital products are continuously required, the
industrial landscape is changing dramatically. The new generations of digital
products feature ever increasingly complex functionalities and design constraints,
while their market window becomes shorter.

Due to increasing demands of the end users, companies need to accelerate their
time-to-market and improve the profitability of new products. Ensuring profitability
and sustaining competitiveness can only be achieved through high quality, high
performance, fast design and implementation and cheap products. Nevertheless, the
designers encounter significant difficulties in delivering competitive products to the
market, since traditional design methods cannot satisfy, at the same time, issues such
as short time-to-market, low cost, low power designs and a complex, reliable, high
performance.

ASICs and FPGAs are usually very convenient for real time systems, due to their
higher computation capabilities, and generally turn out to be more efficient, but a
product developed on them requires more design time and it is usually needed to
invest more resources and money on it; whereas CPUs and GPGPUs have easier
implementations but consume more power.

Ideally, it would be desirable to have a new methodology with the best
characteristics of each one but without any drawback of any of them. The purpose of
FastCUDA is nearly that ambitious: to create an innovative embedded system design
flow that will take advantage of the flexibility, low cost, the ease development and
testing of software solutions, while having the performance, power characteristics,
efficiency and acceleration of hardware implementations. Even more, it is desirable
to avoid Intellectual Properties (IP) and private resources in order to achieve that,
choosing when possible open-source ongoing efforts, as well as enabling an easier
transition from research results to industrial exploitation [21].

The results of this project will be available online in an open-source repository for
public utilization [22], and the input language for the tool will be CUDA.

Chapter 1 Introduction 17

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Figure 4 FastCUDA logotype.

CUDA is a parallel computing architecture developed by NVIDIA in order to
execute general purpose computation algorithms on GPGPUs. The primary parallel
construct in CUDA is a data-parallel, Single Process, Multiple Data (SPMD) kernel
function. A kernel function invocation explicitly creates many CUDA threads. The
threads are organized into multidimensional arrays that can synchronize and quickly
share data, called thread blocks. The CUDA programming model allows the
programmer to take advantage of the massive parallel computing power of a
graphics processor in order to perform general purpose computation. CUDA benefits
from the hundreds of ALUs inside a graphics processor and use massive parallel
interfaces in order to connect with its memory. Applying the CUDA programming
model on the FPGA technology seems to be very promising since the FPGA fabric
can both support hundreds of ALUs and provide massive parallel internal memory
bandwidth. In parallel, FPGAs can offer better performance and power
characteristics than GPUs.

Additionally, the platform will be relatively easy to use through a graphical user
interface (GUI) developed in order to gain wide acceptability by the embedded
design community. Especially, as the tool targets are the group of designers
programming in a high-level and, in the meantime, it is critical to speed-up their
design time, the factor of having that specific tool operating in a user’s friendly
environment is of major importance. In fact, this will play an important role to the
wide adoption of the tool.

The FastCUDA project opens new market channels for the SME participants and
will allow them to expand their market and sell their products and services
worldwide; this wide exploitation of the end-product will be heavily facilitated by
the fact that it will be distributed on an open-source manner and such products, as it

18

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

has been extensively proved in the past, immediately gain significant attention by
the embedded systems community.

V. Document Structure

This Master Thesis follows the subsequent organization: Chapter 2 describes the
main terminology and procedures in face recognition algorithms, explains which are
the current solutions and its features, as well as the theoretical knowledge necessary
in the development of the Eigenfaces algorithm, and lastly, a brief description of the
wireless sensor node employed in the hardware implementation of this technique.

Chapter 3 defines the main requirements every solution should have in order to
have a fair comparison with common specifications between different versions. The
flow followed for obtaining each one is included, as well as particular characteristics
for every implementation.

In Chapter 4, verification methodologies are detailed. This work was tested at
different levels; not only the usual simulation and embedded oscilloscope
verification are applied, but also partial numerical results and images could be easily
verified thanks to the TCP/IP socket established and the scripts developed.

The summary of the research work and achievements can be found in Chapter 5,
where the results obtained are commented and discussed. A further work is shown,
including the capabilities of the final hardware system, additional functionalities and
the progression towards the new design flow with FastCUDA.

Finally, Chapter 6 presents some conclusions and the future lines of this work, in
addition to presentations and some other projects this Master Thesis has a close
cooperation with.

Chapter 2 General Concepts and State of the Art 19

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Chapter 2. GENERAL CONCEPTS AND
STATE OF THE ART

The generalization of software solutions for face recognition systems is a fact
nowadays. Since April 2000 [23] it is possible to use open-source libraries with
functions that can make easier the task of facial detection and recognition [24]. In
contrast, in this Master Thesis are studied and compared hardware, CPU and
GPGPU solutions. Although some of the main concepts could appear to be well-
known, it is necessary to clearly define the concepts involved in the process because
normally they are misunderstood or even mixed up. Consequently, in this section
the principal terms are explained, a brief overview of the current solutions is
introduced, the specific algorithm is detailed and, in the end, the starting point for
the implementation of this research work is presented.

I. Recognition, Detection and Identification

Face recognition seems to be very intuitive and part of the natural daily life for
humans. However, if we are dealing with computer science, it was not until
relatively recent years that it became a matter of fact, while previously it was more a
topic for science-fiction movies or theoretical studies than realities. First of all, it is
necessary to clarify the terminology used in order not to get confused by wrong
concepts, so this section would explain the differences between core terms and
definitions.

 Face recognition is one type of visual pattern recognition problem, where the
system commonly is classified in four independent modules, as can be seen in the
processing flow depicted in Figure 5. The first step is to seek and localise one or more
faces in the image, subtracting the background by selecting only the face area for
further analysis. This first process is known as “detection”. It is worth noting that
detection does not imply any personal identification. For instance, if detection was
being executed by a mobile phone application, it would be sufficient to put a square
enclosing the face of each possible individual.

20

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

Figure 5 Processing flow of face recognition.

However, in order to make a fully recognition from a picture to an identity,
detection step usually also implies to make some calculus or transformations for the
next stage of the process, such as resize the input image or take into account its scale
compared with the reference, place landmarks (nose, eyes, ears and chin) or give
some measurements such as the contrast or brightness.

With those data, face “normalization” could be performed in order to bring
robustness. This second phase allows recognizing faces even with varying pose and
illumination (Figure 6). The geometrical normalization process transforms the face
into a standard frame by face cropping, warping or morphing. The light
normalization could also be applied in order to improve the accuracy of
identification. The automation of this phase is not trivial, there are several researches
[25] in this field and a further study is out of the boundaries of the purpose in this
Master Thesis.

Figure 6 Illumination, pose and geometrical variations in faces.

Chapter 2 General Concepts and State of the Art 21

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Once a face is conditioned to a certain restrictions, feature “extraction” can be
executed. There are different methodologies and procedures, and the main solutions
are discussed in Chapter 2.II. These features are used for comparing with a reference
database of identities. The more subjects and the more variety in lighting and pose
conditions of every person are introduced in the database, the more accuracy will be
obtained in the results. Again, there are several groups currently studying how
introducing certain features, such classes with common characteristics [26] - elder
people, smiling, angry, etc. - can make possible to predict the age of individuals [27],
the gender or even the mood with only a picture [28].

There are, at the same time, two possibilities when comparing with a reference:
authentication and identification. When a query image is contrasted against an
identity in order to verify a candidate, the process is called “authentication”, while if
the unknown image is compared to the whole list of candidates in order to match it
with the more probable person from the sample, an “identification” process would be
taking place [29].

As it will be seen in Chapter 3.I, in this research work it is required to
authenticate individuals, although an identification extension is immediate and it
will be also provided. In turn, it is supposed to have cooperative subjects in a
constrained environment, as could be a pass control with face identification in the
entry of a security building. On the contrary, there are applications for surveillance
systems, where non-cooperative individuals - sometimes intruders - are attempting
to conceal his features (Figure 7) and the aim would be to monitor and register the
features of a suspect. Besides, regarding the first assumption, the first step
(detection) of the full face recognition process could be avoided, and even the
normalization part would be considerably simplified.

Figure 7 Non-cooperative subjects make harder detect faces.

In the same way, when researchers address face recognition term, they usually
refer the three last steps: normalization, feature extraction and identification [30];
while detection by itself is another different field of study. Next section shows some

22

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

working devices, proposed platforms, existing algorithms, libraries of functions and
databases developed until today, in order to illustrate the level of complexity and
detail that could be achieved.

II. State of Solutions

Pattern recognition techniques have been studied since the early fifties [31],
becoming popular with the spread of computers in the nineties. Most of the current
face recognition algorithms were discussed and evaluated by authors along those
years. Therefore, the effort made at the present time is towards accuracy and
robustness of the results, changing the perspective toward new methodologies or
bringing more effectiveness to already existing algorithms. Even so, it is still a hot
topic in many fields such as electrocardiography and the study of heart diseases [32],
or 3D human face model and its faithful representation [33], [34].

Figure 8 3D face acquisition from the study of Bronstein et al.

The first step [35] in order to create a recognition system is to obtain a large
number of face images. This is called the dataset of faces, and it is used to train the
recognition system for obtaining a database of identities. These faces should have the
same size and should be centred. Some databases used several pictures of the same
person in order to be robust under gesture variations and light conditions, but in the
simplest case it is desirable to have at least one face of every subject, a snapshot
which should be taken under similar conditions.

Chapter 2 General Concepts and State of the Art 23

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

The most successful datasets employed in recognition are usually created by
universities or big companies. For instance, Yale University launched in 2001 a free
collection of 5760 single light source images of 10 subjects each seen under 576
viewing conditions (9 poses x 64 illumination conditions) [36]. The Massachusetts
Institute of Technology (MIT), in turn, provided two training sets, one with high
resolution pictures and another with 3240 synthetic subjects, though for building 3D
head models [37]. And just to mention another example of these kind of
contributions, AT&T Corporation (The ORL Database of Faces [38]) and the National
Institute of Standards and Technology (Colour FERET Database [39]) are two
institutions that have also worked with face recognition systems and have two
datasets of faces available for free. If the reader had more interest in this field, many
more examples can be found collected in web-pages, such as www.face-rec.org [40].

Chosen one database, there are several algorithms developed nowadays. One
possible classification into groups [41] is shown in Table 1, and several comparatives
between multiple algorithm have been found searching in the literature [42], [26],
[43], although further information may exceed this project.

Technique Characteristic Algorithm example

Principal Component Analysis
(PCA)

Karhunen-Loeve's transformation Eigenfaces

Independent Component Analysis
(ICA)

From Bartlett et al ICA face recognition

Linear Discriminant Analysis (LDA) Discriminates classes Fisherfaces

Evolutionary Pursuit (EP) Evolutionary algorithm Egenfaces + Evolution

Elastic Bunch Graph Matching
(EBGM)

Recognize objects under
transformations

Trace Transform

Kernel Methods Not linear methods Kernel Eigenfaces. Kernel
Fisherfaces

Trace transform Allows rotation, translation and
scaling

Trace Transform

Active Appearance Model (AAM) Statistical model Statistical Models of Appearance

3-D Morphable Model Encodes shape and texture 3D Morphable Model

Bayesian Probabilistic Bayesian Face Recognition

Support Vector Machine (SVM) PCA + LDA Vector Machines,

Hidden Markov Models (HMM) Statistical model Markov Models

Table 1 Classification of face recognition algorithms.

During the last decade, several companies have launched commercial solutions of
face recognition systems. There have been found lists of more than 50 different APIs

file:///C:/Julio/2014/PFM/www.face-rec.org

24

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

and libraries for software developers [44]. Most of those applications are open-source
[45], while others only include an executable demonstrator. On the other hand, an
example of an ASIC implementation can be found in Prasanna’s work [46]. Authors
of this paper, implemented hardware with a Neuronal Network strategy in order to
make a Principal Components Analysis (PCA) for face recognition, and they got
manufactured it in a 1.5 x 1.5 mm. chip.

There is also a commercial solution for FPGAs offered by Xilinx, called Image
Characterization, but it has some problems detailed as follows. The main
inconvenient features of this IP core are two: the large number of FPGA resources
estimated (minimum 35 DSP48A1 [47]) and that, because it is an Intellectual
Property, requires additional charges and it is encrypted. The first statement requires
the Image Characterization to be allocated on the static part of the device more than
on the dynamic reconfigurable area; while the second forces to purchase a full
utilization license for the IP, in addition to be non-readable.

The study of those alternatives underlined the necessity of designing from scratch
one single and simple algorithm that could be easily implemented in all the
platforms - hardware, CPU and GPGPU - in consideration, mostly because none of
them could be exported to other platforms. Those examples have been used more for
figuring out a certain number of characteristics that the final solution should include
in global, than as guidelines or references. In the end, in order to have a fair
comparison, the best solution shall be implemented sharing the same requirements
in every platform. The Eigenfaces algorithm is the most disseminated and
extensively documented method, and since the online part of the algorithm is not so
complex but rather computational expensive, it becomes the ideal technique to
implement in this research work. In the following section the main principles of
Eigenfaces are presented.

III. Eigenfaces Algorithm Basics

Kirby and Sirovich [48] developed a low-dimensional procedure for the
characterization of human faces based on the Karhunen-Loeve's transformation. This
work was utilised by Turk and Pentland, who reinvigorated the research field of face
recognition with the publication of the popular Eigenfaces method [49]. According to
them, there are two parts of the system, one calculated offline and another in the
final device. For having operative the recognition system device, it is only necessary
to have available the results of the first computations as input data. First, every step
of the offline procedure will be explained.

Step 1. Human faces can be seen as an infinite linear combination of orthogonal
functions of stochastic features. Among all the possible images in a picture

Chapter 2 General Concepts and State of the Art 25

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

(the space of possible pictures), only a tiny fraction of them are faces. They
are known as the subspace of human faces, and in order to study different
individuals in this subspace, it is required, in the first place, to acquire a set
of representative real faces. These training faces (Figure 9) are matrices of

pixels { } (R=rows, C=columns) and constitute the database
of faces once centred and adjusted.

Figure 9 Training faces.

Step 2. The usual procedure is to take each row of pixels from those images and
concatenate them with the next row, until the image is a single vector

column { } that represents each original face.

Step 3. Those vectors can be added up and divided by the number of samples (M) in

order to obtain the arithmetic mean vector

∑

 , which represents

the average face shown in Figure 10.

Figure 10 Average face from people of CEI.

Step 4. Build the matrix with the results of subtracting the average face from
previous vectors .

Step 5. The covariance matrix is usually computed as

∑

where A is a DxM matrix. This matrix C is the input data of a Principal
Component Analysis (PCA), last step of the offline part of the algorithm.

Step 6. Compute the eigenvectors of the covariance matrix. These eigenvectors
are known as Eigenfaces because of their appearance when printed as RxC

26

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

matrices. The method followed is a Principal Component Analysis (PCA),
and further information is given below.

The sixth step is too computational intensive even for recent computers.
Fortunately, there is a solution for this issue: instead of computing the eigenvectors
of the matrix , it is possible to compute the ones of the matrix . For
instance, if each picture was 144 rows by 176 columns, would have 25344 rows
by 25344 columns, so there would be 25344 eigenvectors of 25344 elements each one.
Nevertheless, for 128 samples of faces, would have only 128 rows by 128
columns, and so, only 128 eigenvectors of 128 elements each one could be obtained.

Following this technique, it will result:

Step 1. Computing the eigenvectors of : being the reduced
eigenvectors of the matrix .

Step 2. By pre-multiplying the previous equation by A:

 Since then:

 By calling :

 So are the eigenvectors of the matrix C.

It has been obtained the transformation from the reduced eigenvectors of
the matrix to the M most significant eigenvectors of the large
matrix . Those eigenvectors are the features of the human face. Each one
represents an orthogonal axis of the subspace of faces, and three of them can
be seen in Figure 11. The eigenvalues of are the same to the most
significant in

Figure 11 Eigenfaces.

Step 3. The dimension of the subspace can be reduced even more by keeping only
the K eigenvectors () corresponding to the K largest eigenvalues () of the
Eigenfaces. It is possible because most of the eigenvalues are zeroes or
negligible in contrast to the most significant eigenvalues.

Chapter 2 General Concepts and State of the Art 27

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Step 4. Those K Eigenfaces should be normalised for further utilisation, so in the
end, there will be K normalised Eigenfaces .

Reached this point, it has been calculated the average face, centre of the subspace
of the human faces, and the Eigenfaces, axes of the subspace of the human faces.
With this information it is possible to represent every single face as a linear
combination of a number of weights on those axes, for instance, 127 coordinates.
Accordingly with the numbers in all the examples exposed, the storage of every
identity in a system with this information only requires 127 bytes, which in
comparison with the original 25344 bytes of the original picture is a huge reduction.

It is worth to highlight that this algorithm is supposed to be universal: beyond
being applicable to the training faces, it can also be utilised with faces from the
outside of the dataset.

Having processed the offline part of the recognition system, now it is presented
the method for obtaining identities. This part of the algorithm could be calculated
offline by simply adding subjects to a database of identities. However, in the
mandatory online part of recognition system will always be necessary to have the
authentication part, so this fuctionality should be included. The steps are the
following:

Step 1. Subtract the average face to the normalised picture of the unknown person
(j) to recognise. This step is the same as above, the one that was previously
done with the training images . The arithmetic mean of the faces

() was previously calculated and provided as input data for the recognition
task. The image resulting can be seen in Figure 12, and it represents the face
in the origin of the subspace of faces.

Figure 12 Query face, average face and subtracted face for one candidate.

Step 2. Projection onto the human face subspace. The previously calculated and
normalised eigenvectors are the axes of the subspace of faces; therefore,
each subtracted image can be expressed in the face subspace. Such

operation is made by projecting every candidate onto the Eigenfaces,
obtaining thus the weights (

) or coordinates for every axis:

28

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

 ̂ ∑

 . If the purpose is only to store some identities in the system,

it would be enough to save these coordinates and the name of the person
studied. If the system already has some identities and the aim is to
authenticate one unknown person, two more steps are required.

Step 3. Each subject has one unique representation with those coordinates and
Eigenfaces, and it can be seen as a single point in the subspace of face. The
transformation to the real picture returns faces rebuilt in a synthetic manner.
Figure 13 is one example of a synthetic rebuilt face. For instance, the optimal
number of principal components to keep could be studied by measuring the
accuracy in representation with certain number of Eigenfaces.

Figure 13 Synthetically rebuilt images of the candidate 9 with 127 and 50 Eigenfaces.

Step 4. The last part is to compute the Euclidean Distance. Given the coordinates of
the projected query face (j), and the coordinates in the same subspace of one
candidate previously known (i), it is possible to distinguish if they are the
same person or not by calculating the Euclidean Distance between those

points ‖ ()‖. It is defined a threshold or level of acceptance

below which it can be safely said that both faces are the same identity
 . If the distance is greater than this value, the candidate does not
match with the query face and the authentication is rejected. As it was said
before, an extension of this application can be easily made by going along all
the database of identities and assuming that the minimum distance
corresponds to a correct identification, provided this distance is also less
than a threshold.

Although it is not the most common technique, Eigenfaces could be used also as a
detection algorithm [50], by computing the distance between the possible face image

and its projection onto the face space. ‖ ‖ ‖ ̂‖ In the

end, it is the same as verifying if a picture is well rebuilt by projecting it onto
Eigenfaces. If the distance is greater than a certain threshold, it means the image is
not a face and because of that, it will have a poor rebuilt result, with many errors
when comparing with the original picture. As it has been seen in Figure 14, a zebra is

Chapter 2 General Concepts and State of the Art 29

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

not well defined with human Eigenfaces, although the representation tries to imitate
some features.

Figure 14 Attempt to rebuild a non-human face image with Eigenfaces.

Once the theory and main considerations have been shown, there is nothing left
to present but the platform where the hardware and some CPU parts of this work
will be implemented.

IV. Starting Point

High Performance WSNs and Autonomous Robots share a certain number of
characteristics, such as a limited amount of energy to spent, or the sensing/acting
abilities while processing real time data. What is more, WSNs have become an
appropriate solution for certain functionalities of robots, and this became evident
after the appearance of commercial wireless platforms with robotic related
application [51] [52]. At the same time, a WSNs platform for High Performance
application was designed and implemented in CEI, which was presented in the Final
Degree Project of the author of this Master Thesis [20] as the first stage of RUNNER.

As illustrated in Figure 15, the platform has four different PCBs. The red one is
the power supply layer, called HiRePower. It could be powered by a lithium battery
or through a mini USB connector, and it is able to charge the battery while supplying
five different voltages on five different rails. It also has an automatic control that
follows the demanded current (up to 1.6A) with up to 97% of efficiency.

The blue layer is the brain of the platform, it is called HiReCookie, and its main
characteristics are: a smart management of power islands, executed by a tiny
microcontroller but directed by the decision made in the FPGA with the power
consumption measured; the capability of having, simultaneously, an embedded
microcontroller in the FPGA for running software programs together with hardware
accelerators embedded to speed up some functions; and finally, the ability of being
dynamic and partially reconfigured, even remotely.

30

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

Figure 15 High Performance WSN Platform designed in CEI.

The Ethernet layer has an RJ45 connector and a W5200 microcontroller that has a
SPI communication with the FPGA, for interchanging with Internet the desired
information, from the FPGA to other devices and vice versa, such as Nao robot, other
HiReCookie or simpler nodes, computers or smartphones. At the same time, it is the
link with the PCBs of the cameras.

The last two PCBs are replicas of the same board, which has a digital sensor
camera with VGA resolution (640 by 480 pixels) and 30 fps. The communication with
the FPGA is an I2C interface, which makes possible an easy control of the operation
and modes of the camera.

The final integration of this novel platform was performed by implementing
camera and Ethernet controllers for the FPGA, as well as an application that sent
images from the cameras to a client in a personal computer.

In Figure 16 is depicted the diagram of the system that was made before this
Master Thesis and the communication between blocks. Once the communication is
established between the client and the server (Ethernet module), the SPI interface
translates the message to MicroBlaze, so in the end petitions launched by external
devices will be listened by the FPGA, and some information will be returned after
the task has been executed.

Chapter 2 General Concepts and State of the Art 31

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Figure 16 Diagram of the initial system and interconnections.

Although this system is able to take pictures, for the second stage of RUNNER it
is necessary to design two new blocks: Face Recognition and Stereo Matching. As it
was mentioned above, the first one will recognise people in a controlled environment
based on the Eigenfaces algorithm, while the second will be used as a simple
navigation system, by avoiding the direction where the closest objects are and
following the direction of the furthest point in the view. In the development of the
recognition system, this new modules imposed certain requirements that will be
explained in Chapter 3.I.

Chapter 3 Requirements and Implementations of Recognition System 33

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Chapter 3. REQUIREMENTS AND
IMPLEMENTATIONS OF RECOGNITION

SYSTEM

Once framework and general concepts of this work have been studied, the
requirements for designing different solutions of the selected recognition system
should be presented. Several versions will be designed pursuing the same pattern, in
order to make a fair comparison in the end. The process and methodologies of design
will be detailed. Following a rising level of complexity, it is described from the
development of the first functional system and first applications, up to the higher-
end implementation of the final hardware recognition system.

I. Requirements for the System Design

In order to implement systems with common characteristics, it is necessary to
study particular limitations of final devices. They will become specifications for all
the designs, for the sake of an impartial performance comparison.

As well as the aim of RUNNER, the principles of FastCUDA shall be studied. The
author of this research work will be taking part in the team in charge of the synthesis
of the CUDA Kernels, as well as being responsible of certain deliverables of both
projects. It not only shall be perform the design in the WSN node, but it also should
be supervised the development of CUDA code, and make sure all solutions fulfil the
same specifications in order to achieve a fair comparison with the whole list of
versions.

The nature of constraints this work must bear with can be divided in three
different types, detailed as follows:

I.1 Related with RUNNER Project:

 The protocol of messages between the robot and the platform has to be defined.
The robot will launch petitions and the visual cortex shall answer a simple

response with the results as soon as possible. The robot will take fast decisions
with those data, acting in consequence.

34

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

 In RUNNER it is desired to have two interchangeable blocks: the Stereo Matching
and the Face Recognition hardware. Both shall have reconfiguration capabilities
since the idea is to use one or the other when the robot will decide, but not both at
the same time, in order to save resources. Both peripherals shall be implemented
in the novel platform HiReCookie and tested online. Following the starting
system presented in Chapter 2.IV, a representation of those two modules can be
seen in Figure 17:

Figure 17 Reconfigurable hardware for RUNNER project.

 The maximum resolution available by the cameras in the project RUNNER
specification is 640x480 pixels, at a ratio of 30 fps. Smaller face pictures should be
taken into consideration, due to the fact that one face will not occupy the whole
area of a picture.

 It is sufficient to process the luminance Y of the YUV encoding of the camera, so
greyscale images will be a simpler and more practical option in this case. The
extension of the solution to colour images is as simple as replicate the block for
each one of the three channels and have a voting system, but this exceeds the
present goals.

I.2 Related with FastCUDA Project:

 As consequence of the SystemC synthesis tool limitation, it is not supported any

floating point data type in FastCUDA. Neither float nor double variables are
allowed in the CUDA source code, so it will be avoided any effort in the C source
code as well as in the VHDL description. Besides, images used will have either
integer or unsigned precision.

Chapter 3 Requirements and Implementations of Recognition System 35

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

I.3 Additional Purposes:

 This Master Thesis is focused on the identification part of a recognition system. It
is desired to contrast face images against a database of identities. In order to
achieve this purpose, it will be supported the minimal required functions and
skipped non-essential ones.

 It is required to build a database of identities with people working in the
laboratory of the Centre of Industrial Electronics, in order to prove the results in a
real scenario. These individuals are supposed to be cooperative; if they
endeavour to be authenticated, they will be awarded with the interaction of a
robot, or with the permission to access to certain area.

 It is requested to have a fair comparison between different parts of devices that
are being taken into consideration, so if only the processing unit for energy
consumption was taken into account, no other parts should be included in the
comparison. Another possibility could be to consider the whole device as one
indivisible unit.

The process followed during the design should be progressive due to the
complexity of the system. It is necessary to start by the simplest solution, test the
functionality and then step up to the next level in difficulty until a complete system
is obtained.

Due to the multiple solutions that will be implemented, it would be necessary to
develop automatic tools in order to make easier the debugging task of successive
versions. Besides, in order to take measurements of the accuracy in the obtained
systems, it is possible to use double data type precision.

Once having exposed the requirements, and highlighted the specifications, it is
the turn to present the practical work and detail how the task was accomplished.

II. MATLAB as Proof of Concept

The first step after having studied the existing solutions and the requirements of
the recognition system is to start by a simple application and understand every
single step that is taking place in the process of face recognition. MATLAB was
chosen as the environment to develop this demonstrator application because it
allows easy image processing, in addition to matrix manipulation and inclusion of
complex mathematical functions. Thus, a simple application for understanding some
concepts will be developed.

36

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

Later, it will be verified that this amount of pictures is enough to have a universal
base of faces, by rebuilding faces from outside of this set. However, before
contrasting query faces against identities, it is necessary to register the face of those
subjects. This process is detailed as follows:

II.1 From a Set of Images to the Database of Identities

First of all, it is needed to have a dataset with certain number of images with
different faces. These images should have almost all the features required to identify
any face, such as wide or narrow cheekbones, different coloured iris, age and sex. On
the other hand, non-permanent characteristics like hairstyle, and the background of
the picture should be minimised. All the set of pictures must be under the same light
condition, at the same scale and positioned with eyes and nose references.

As it was mentioned in Chapter 2.II, several dataset of faces were studied. They
are included as a future line in order to enrich the study, making it more robust
against changes in luminosity, geometry or pose. Nevertheless, it is necessary to
know the features of the working people at CEI, and since there is a set of 128 face
pictures, it was the chosen one for training the system.

Moreover, the availability of BRAM memory in the FPGA was studied, and it
turned out to be possible to have thirteen blocks of 32 Kbytes. The appropriate scale
for managing full images is the format QCIF of the camera, which needs 25344 bytes
distributed on an image of 176 of width by 144 of height pixels. The camera
controllers use two 32Kbytes of this memory, the processor two more 64 KB for cache
memory, so with this size it is possible to have up to seven 32 KB modules – more
than seven images - stored in BRAMs in this Spartan-6.

The 128 pictures of faces were coloured, they had different sizes and, on top of
that, they had heterogeneous file formats, such as JPEG file compression, BMP
bitmap or PNG extension. In order to align the pictures and have a simple readable
format of the same size, it was employed the following BASH script, running on
Windows operating system by naming the text as “jpg2pgm.bat” for instance:

convert.exe *.jpg -resize 176x144 -gravity center -background black -extent
176x144 -scene 1 image%%03d.pgm

Table 2 BASH script used in order to adequate the images.

As it can be easily inferred by understanding the code, the script will use the
application convert.exe, which will take as an input every file in the same folder with
the extension jpg in this case. The size of the found images will be accommodate to
176 width by 144 height pixels, put in the centre of the area an filled the rest of the
image with black colour. The output image has the same 176x144 size, and the script

Chapter 3 Requirements and Implementations of Recognition System 37

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

will write PGM files with the name “imageXXX.pgm”, being XXX a number from 0 to
127. An example of the input and output can be seen in Figure 18.

Figure 18 Original and output of the BASH script.

The chosen PGM (Portable Graymap Format) is one simple greyscale format of
images. It is related with PBM and PPM, being used PBM for black or white pixels
and PPM for coloured ones. The structure of a PGM file is as follows:

 First, one or more lines as the header of the file. It can contain the string “P2” or
“P5”, depending on whether it is an ASCII file, with numbers encoding the
luminosity of every pixel, or a raw one, having encoded this value with binary
characters. The next two numbers are the width and height, in this case “176 144”,
and the last one is the depth of the colour, between 0 and 255 for 8bits and from 0
to 65535 for 16 bits depth.

 Secondly, the body of the image. It was chosen the binary encoding, because it
requires less storage space. For instance, for writing down a file with 8 bits of
depth and 5 pixels with values 74, 117, 108, 105 and 111 in a raw file it is written 5
bytes: “Julio”, while in the ASCII encoding it would require 18 bytes counting
spaces: “74 117 108 105 111”. This example can be seen in Table 3.

Example BINARY

P5

5 1

255

Julio

Example ASCII

P2

5 1

255

74 117 108 105 111

Same image in both
cases

Table 3 Example of a readable PGM file.

Although the automatic transformation returned scaled images, in a greyscale
easy format, there was the necessity of applying four more transformations
manually, with GNU Image Manipulation Program (GIMP). It was created a
template for all the faces, which put landmarks in the area where forehead, eyes,

38

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

nose, mouth and chin is supposed to be, in addition to the extension and localisation
of the face. In Figure 19 it is shown the input, template and output of the
transformations described below.

Figure 19 Result of applying 4 manual transformations.

 Resize and move every head in order to be place inside the white oval, filling up
the whole area.

 Rotate and turn over the faces in order to fit with the landmarks. Sometimes the
faces are not straight or looking to one side.

 Fade the limits of the shape, in order to have progressive disappearance of the
features. Hair is a mutable feature and it is not desired to take it into account.

 Improve the contrast of the image and proportionate a homogeneous luminosity
for all the pictures. Some pictures are too dark, or show some differences between
dark zones.

Once the dataset of pictures was ready, it was written a “base.m” script for
MATLAB. Basically, it follows the steps described in Chapter 2.III. The program is
outlined below:

 Read all the PGM images of a certain folder. Each row of pixels is concatenated
with the next, so that at the end each image is one column of data.

 With all the pictures, a matrix of faces is generated.

 The arithmetic mean of each row, pixel by pixel will be the average face.

 Calculate a second matrix M by subtracting this average face to every column of
the previous one.

 As it was already mentioned, the calculus of the eigenvector of the covariance
matrix S=M*M'/(N-1) is impractical, so they are calculated for Sr=M'*M/(N-1)
and the result is pre-multiplied by M.

 A configurable number of the greatest vectors are kept, once ordered and
normalised.

Chapter 3 Requirements and Implementations of Recognition System 39

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

 These Eigenfaces are used for projecting different faces in that base prj=U'*M, so
each face is represented by a maximum of 127 coordinates.

This is the so-called database of identities, and in Annex 1. Table of Identities a
summary with the number of each subject and the corresponding name is included.
The code of this script is included only in the CD because of its extension, as well as
is the dataset.

It is worth noting that this script writes down files with some results, as the
Eigenfaces and the result of projecting the set of faces onto the subspace. These files
will be used in the future with the FPGA as reference, and besides with future
verification scripts as a golden reference with real precision instead of integer one.

In order to verify how far subjects are from others, it was also developed some
code for measure the Euclidean Distance. There are three individuals who have two
different pictures included in the database; one example can be seen in Figure 20.
The matrix of distances between identities, one against another, was computed, and
as it was expected, the three minimum distances are those three pairs of similar faces
that belong to the same individual.

Figure 20 Two different pictures from the same subject are closer between them than to others.

The difference between equal identities and different ones is one order of
magnitude higher (1236 against 19375). The distance between a face and another
picture different from a face would be out of the range, far above ten millions.

The ranges of all the results were studied in order to have precise data types
when implementing this system in VHDL. For instance, and accordingly to the
restrictions imposed in Chapter 3.I, Eigenfaces will be multiplied by 1024.
Consequently, it will result in values from - 84 up to 77, which can be stored in 8 bits
and Integer data type with a 34% of safety margin. The losses of accuracy are below
1%, taking into account the rounding carried out.

It is highlighted that there is no need for computing the square root of the
Euclidean Distance at all, so it will not be calculated in any version of the recognition
system. The fact of having norms instead of modules only makes the distance to
follow a quadratic function shape.

40

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

As first demonstrator of the recognition system, it was rebuilt every initial face,
with the reference of the dataset of identities (values of projection onto the
Eigenfaces) and the base of the subspace of human faces obtained previously as the
only inputs. The accuracy of the method can be seen in the Figure 21, since the
synthetic images hardly can be distinguished from the original ones.

Through this meticulous process, it has been created the database of identities
and a software recognition system. Furthermore, it has been explored how accurate it
is, and the main concepts are understood. However, until this point, there have only
been made tests with images already processed by the designer, and used as part of
the training set. In Chapter 3.II.3 face from outside the database will be studied, and
in Chapter 3.III.2 real images will be investigated. It is the turn to develop a second
application that will make use of the theory studied and achieve interesting results.

Chapter 3 Requirements and Implementations of Recognition System 41

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Figure 21 Synthetically rebuilt image of all the database of identities.

42

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

II.2 Fade Faces

It has been studied that every one of the previous faces are points of the subspace
of faces. This assertion brings up the following question: is it possible to represent
artificially faces by assigning random values of coordinates of the human face
subspace?

Trying to answer such question, it was written the following MATLAB code
(Table 4), that basically attempts to rebuild faces given random coordinates of the
subspace of faces:

% Rebuilt random people from outside of the base
people=input('How many random people you want? ');
factor=1000; % Change this value and the face
 % will be close/far from the origin
for i=1:people, % Coordinates of the person
 prj4=double(int16(factor *(0.5-rand(127,1))));

 rebuilt4=U*prj4+u; % Rebuilding people
 NEW_IM4=uint8(vec2mat(rebuilt4(:,:)',C));

 imwrite(NEW_IM4,'_-_Mutant.pgm');
 % Write down an image
 image_new4=uint8(vec2mat(rebuilt4(:),C));
 imtool(image_new4); % Watch with MATLAB the image
end

Table 4 Rebuilt random people from outside of the base.

As a result, there were obtained faces with random features, and by changing the
factor value it was possible to make stronger their weight, going from almost the
average face – origin of the base – outward to saturated faces (Figure 22). It is
observed that real faces follow a non-random distribution, giving more importance
to the first values, which, at the same time, are the most significant ones.

Figure 22 Progression of faces with factor equal to 300, 800, 1200 and 3000.

Chapter 3 Requirements and Implementations of Recognition System 43

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

In conclusion, it would be necessary to study the distribution of the coordinates
in order to create random people from scratch. This is far from the purpose of this
Master Thesis and thus is not going to be included.

Even though random points are not always real faces, certain points can be the
transition between two individuals. For instance, straight lines can link two points,
and features along the path experiment a linear transformation. In Table 5 it is
shown the MATLAB code for watching the transition between two identities of the
database of faces.

% Fade faces: transition between individuals.
subject1=input('First subject: ');
subject2=input('Second subject: ');

point1=prj(:,subject1);
point2=prj(:,subject2);

transitions=uint8(input('number of transitions between subjects: '));
increment=point2-point1;

line=zeros(N-1,1); % Will contain the points from subject1 to subject2
for i=0:transitions+1,
 advance=(double(i)/double(transitions+1))*increment;
 line(:,i+1)=point1+advance;
end

rebuilt_fade1=U*line+repmat(u, 1, transitions+2);
NEW_fade1=uint8(vec2mat(rebuilt_fade1(:),C));

imwrite(NEW_fade1,'Fade.pgm');
imageFade=vec2mat(NEW_fade1,C);
imtool(imageFade);

Table 5 MATLAB code for watching transitions between subjects.

This code was used for obtaining a configurable number of faces between two of
the identities of the database. Three examples can be observed in Figure 23, where
transitions seem to be very natural; beard, smile and facial features from the second
subject appeared step by step in the first one as if it were turning into someone else,
until finally the second individual is reached.

44

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

Figure 23 Morphing or fading between different individuals.

There have been employed images from the original database of faces, although it
is mandatory to test different faces in order to assure the universal applicability of
the system. This is precisely the following issue to be presented.

Chapter 3 Requirements and Implementations of Recognition System 45

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

II.3 Rebuilding External Faces

Represent faces which were already in the database is not a demonstrator of
being a universality base for faces. The vectors should be tested with other pictures
different from the ones utilised in the calculus of the subspace of Eigenfaces.

First, there were considered images from individuals whose identities were
already in the database, but the picture analysed was taken years after. This leads to
the question: have the features of one person changed that much for not recognising
him as the same individual?

For instance, a younger version of Brad Pitt in addition to snapshots of CEI
workers served for obtaining the Eigenfaces mentioned above. The results of
projecting an older Brad Pitt in the base of faces proportionated certain coordinates,
and the combination of those values with the vectors rebuilt the older Brad Pitt. The
image can be seen in Figure 24.

Figure 24 Rebuilding a new Brad Pitt with Eigenfaces.

It would be worth noticing that, even with only 128 images, the base is accurate
enough to identify the same person after some years. The Euclidean Distance was the
minimum between the younger and older exterior versions of the same person than
between the older and the others, with once again one order of magnitude of
difference. Despite this good result, it should be considered to increase this number
of images in the future, what will enrich the variety of features presented in the
database.

Before recognising this new picture, it was necessary to repeat the previously
described steps for having a picture with a face detected without its background and
normalised afterwards. It is a request for the future of the full recognition system to
consider these steps in the detection algorithm, and try to include the option of doing
it automatically. Nevertheless, it will be tested with collaborative subjects in Chapter
3.III.2.

One more example can be seen in picture Figure 25. In this case, the database has
inside two different images of J. A. Cobos, and a third one was used for rebuilding
and identifying. The distance in this case was 15 and 14 times smaller for each one of

46

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

the two matches, when with Brad Pitt was 11 times. It can be inferred that having
pictures of the same age and a greater number of them in the database do help the
task of identifying people. The synthetic rebuilding has been improved, and the
features are better imitated.

Figure 25 Person with the same age and more presence in the database.

Following the usual procedure, it is desired to rebuild a totally extern person
from the database. In this case, the subject Pierce Brosnan - in the James Bond movie
- was not as well defined as in other occasions. The system tried to do its best in
order to adjust to the facial morphology of the actor, and the returned image can be
watched in Figure 26.

Figure 26 Database extern person reproduced by the recognition system.

Pierce Brosnan was not found between the identities of the database, as it was
expected, and the distances with other individuals were into the usual range. It
would be a good strategy for a real recognition system to store every candidate
detected, known or unknown, in the server. Eventually, both the database and the
Eigenfaces could be updated offline, and thus, this would lead to better performance
in the recognition process. Moreover, there are several techniques for improving a
recognition system. For instance Saishanmuga et al. [53] have implemented a genetic
algorithm, taking advantage of neuronal networks for recognition systems, following
the example that Turk and Pentland proposed in 1991.

Chapter 3 Requirements and Implementations of Recognition System 47

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

It was presented the last result of a system modelled with the help of MATLAB.
From now on, there will be real recognition systems working on portable devices, in
particular in a HiReCookie node and in a laptop afterwards.

III. C Code Development

Once mastered the face recognition technique, it will be implemented in a high
performance Wireless Sensor Node. It is a good method to start with a simple design,
easier to debug than the final system, and gradually incrementing the level of
complexity. Following this approach, it was developed the first embedded
recognition system in software, running in a MicroBlaze soft-core processor. The
main features, what the last implementation would need in the future, were settled
in this process. Consequently, it supposed a step forward the validation for certain
parts of the final application.

Examples of those advances are: the protocol established and followed along all
versions implemented in HiReCookie, as well as memory mapping and development
of functions for the RAM.

In this section of Chapter 3, there will be seen the main functions of the software
developed, and in Chapter 4.I it will be presented the methodology employed for
contrasting the results returned. Once verified the C code produced for this first
embedded recognition system, it was also used as reference for one further version
in CUDA language.

III.1 Commands and RAM Functions

The diagram of the initial system and interconnections was already explained and
also shown in Figure 16. In spite of the commands already proposed for taking
pictures, it is necessary to establish a communication protocol between the external
client – or a robot - and the embedded microprocessor of the FPGA. Novel functions
for face recognition are going to be designed, and they should have a place in the
TCP socket application, in order for launching the execution of the algorithm.

In Figure 27 it is shown the client running on a personal computer. This
represents the remote control station that a user actually can manage. Without
having any knowledge of what the system does, he could request petitions to the
FPGA and it would entail a computation and a simple answer or a value would be
returned.

48

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

Figure 27 User interface to send commands to the FPGA.

It would be worth noting that messages can be received by the device from any
part of the World through Internet and from any platform, such as the Ethernet-
based internal network of Nao robot. The FPGA is able to manage up to 8 clients in a
sequential manner. The first client is always the security client, because in case there
were more than itself, it would be the one with communication privileges, although
all clients would be listened.

If it was desired, in addition to the command window, it would be possible to
launch a second terminal in the computer where is being developed the software of
the embedded microprocessor. An image of the information it returns is shown at
the left of Figure 28. This second terminal usually is helpful for debugging issues, but
it has much less data traffic capacity than an Ethernet connection because it is based
on a JTAG interface. Therefore, for this system, Ethernet communication will also be
useful for sending large amount of data, such as images, for an easier debugging (see
the right part of Figure 28).

Figure 28 SDK terminal compared with Ethernet socket for debugging.

Once studied the fundamentals of the communications, it was described a pattern
for the protocol that Nao will follow in order to be interpreted as commands by the
FPGA:

 Every petition will be composed by exactly 5 bytes or characters, being the last
one always “!”.

 The first char will be the operation code; to take a picture, start the recognition
task and launch the Stereo Matching procedure among others.

Chapter 3 Requirements and Implementations of Recognition System 49

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

 The second involves which camera is going to take part, 1, 2, both or none.

 The third is the client that is intended to receive information, which can be
translated in the end as debugging client, Nao robot or nobody. Only in case a
distance XY is requested, this byte would be related to the X of the query pixel.

 The forth char is reserved for a configurable value, as could be the face it is desire
to identify or the Y pixel of the image, when detecting distances.

A summary table is presented in order to clarify the list of possible commands,
following this protocol and putting some examples of use.

 Bytes Define Possible values

Operation 1 Desired operation ‘p’ = take a picture

‘w’ = send a taken picture

‘r’ = face recognition

‘s’ = Stereo Matching

‘d’ = XY pixel distance

Identification 1 Camera taking part ‘1’ = Camera 1

‘2’ = Camera 2

‘b’ = Both cameras

Send to 1 Who would be the

receiver

‘n’ = Nao / Choregraphe

‘d’ = Debug client

Configurable

value

1 Against who is made

the test

#0 = All

#1-#128 = subject 1 to 128

End 1 Last char ‘!’

Examples 5 All the possibilities

are:

p100!, p200!, pb00!,

w100!, w200!, wb00!,

sbd0!, sbn0!, dbXY!

rbd#0!...rbd#255!, rbn#0!...rbn#255!

Table 6 Commands for the communication with the robot Nao.

The returned value for recognition task (rbn_!) would be one byte, in case
authentication is requested, but 128 bytes for identification. In order to be launched,
identification has reserved the value #0, while subjects are authenticated accordingly
with its position (see Annex 1. Table of Identities).

The meaning of bytes will be the distance from the picture image to the studied
candidate, so a perfect match will correspond to x00, while bigger values should be
compared with a threshold defined in Nao. In case of identification, each byte is the
result of the distance with each subject and Nao should choose which one or ones are
close enough. For “sbn0!” petition, 2 bytes will be returned pointing to the pixel with
the deepest depth found. On the other hand, when “dbXY!” command is sent, it will
be returned the distance obtained for the XY pixels asked in the request, scaled in
one byte.

50

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

All those commands were tested with a Nao robot at the Castilla La Mancha
University and a HiReCookie node inside the CEI laboratory. The robot launched
petitions and the HiReCookie answered, and this resulted in a consequent
performance from the robot part (send greetings or do not trust somebody, go to the
right or left, etcetera).

More than these Nao commands were developed for debugging purposes, and
they are summarised in Table 7. A PGM header was also sent with the image when
returning pictures, because it was simpler than accommodate the client to every case.

Command Define

see1! See the mean face from the RAM

see2! See the eigenvectors from the RAM

see3! Send the reference identities stored in the RAM

see4! See the image which is being processing

see5! See an test image

name! Simply send “Julio”

edge! Execute a Sobel filter with the camera 1

file! Receive files, images and references

set0! Go to the initial position for storing input data

copy! Copy the test image into the input space and set the position pointing to test

Table 7 Debugging commands.

Accordingly to this commands, a mapping of the memory was done in the file
“RAM.h”, as can be seen in Table 8. Optimised functions for writing and reading one
or burst data from RAM memory were also written, but they are only included in the
digital version of this Master Thesis because of the large number of lines of code.

#define Image_init 0x00010000 /**< Position in the RAM for the first image */
#define Image_size 0x00006300 /**< Size of an image */
#define Number_Images 0x00000080 /**< Number of Eigenvectors +1*/
/**< Position in the RAM for the average image */
#define RAM_average (Image_init)
/**< Position in the RAM for the Eigenvectors */
#define RAM_vectors (RAM_average+Image_size)
/**< Position in the RAM for the reference */
/**< this is conservative, Image_size blank */
#define RAM_reference (RAM_vectors+(Image_size*Number_Images))
/**< Position in the RAM for testing */
/**< this is conservative, N*2 blank */
#define RAM_tst (RAM_reference+((Number_Images*(Number_Images*2))))
/**< Position in the RAM of an example of image */
#define RAM_image_in (RAM_tst+Image_size)
/**< Position in the RAM for an output image */

Chapter 3 Requirements and Implementations of Recognition System 51

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

#define RAM_image_out (RAM_image_in+Image_size)
/**< Position in the RAM for my mean subtracted image */
#define RAM_image_sub (RAM_image_out+Image_size)
/**< Position in the RAM for the coordinates */
#define RAM_point_coo (RAM_image_sub+(Image_size*2))
/**< Position in the RAM for the distance result */
/**< this is conservative, 4 blanks */
#define RAM_comp_dist (RAM_point_coo+(Number_Images*4))
//#define RAM_comp_next (RAM_comp_dist+(Number_Images*4))

Table 8 RAM memory mapping.

With all this information, it only remains to describe the procedure for initialising
the recognition system. Once the socket is established, three files should be
transmitted from the client to the RAM memory: the average face, the Eigenfaces and
the reference – or coordinates of the known candidates. For the described task it will
be used “set0!”. This command is also useful if future updates are required. A
screenshot shows this process in Figure 29.

Figure 29 Initialization of the recognition system.

52

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

Another possibility is to send one test image: once the position is set to “test”, a
“file!” command would do the rest. Once an image is in this position, a ”copy!”
command would put the test image in the input of the system.

All those commands will be employed in the subsequent versions, described in
next sections.

III.2 SDK Recognition Functions

First, it is outlined the modules that all the HiReCookie versions will include. In
Figure 30 it is depicted all the initial block and interconnections.

Figure 30 Interconnections and blocks of the HiReCookie systems.

There is a clock generator that manages all the clock signals, two 64KBs cache
memories for the MicroBlaze microprocessor, an AXI bus interconnecting the
memory controllers (RAM, BRAMs and Flash), two camera controllers, one timer,
two peripherals for the Ethernet connection (RST and SPI) and two more for
reconfiguration issues (hwIcap and reconf).

Chapter 3 Requirements and Implementations of Recognition System 53

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

For this software version, it is only required to include C code in the program that
executes MicroBlaze. Nevertheless, in the next hardware versions, a new hardware
accelerator block will be included, and the same distribution will be illustrated with
a simpler diagram.

In the current case, the idea is basically to reproduce the online recognition
system previously studied but translating the MATLAB code onto C. Once the part
of the software running on the embedded microprocessor reaches the recognition
command, a function eigenface_s is called with the number of the face to
authenticate. When the purpose is to identify against the whole database, the
function is the same except for the calculus of the distance, which is executed for
every value, as can be seen in Table 9.

void eigenface_s(uint8 n_face)
{

 sub_face_s();
 sub_send_s();
 coord_face_s();
 coord_send_s ();

 dist_face_s(n_face);
 dist_send_s (n_face);

}

void eigenface_all_s()
{
 uint8 index=0;
 sub_face_s();
 sub_send_s();
 coord_face_s();
 coord_send_s ();
 for(index = 0; index < 128; index++)
 {
 dist_face_s(index+1);
 dist_send_s (index+1);
 }
}

Table 9 Scheme of the functions in embedded software.

After calling every subroutine of the algorithm, it is possible to send partial
information to debug through Ethernet; what is more, in Chapter 4 the verification of
this system will be studied due to this property.

It would be worth noting that data types already studied when making
operations on MATLAB were respected in order not to overflow any variable. The
same tests were checked with the new software, and results agree between different
versions.

The first HiReCookie recognition application is completed, although it has a weak
point: it needs 8 seconds to finish all the process. Due to this unacceptable time, it
will be designed two hardware systems in Chapter 3.IV.

54

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

III.3 Towards CUDA

Before going into details of the hardware version, it is presented the contribution
made for obtaining the GPGPU recognition system in CUDA language. After
studying the main concepts of parallel computing and the FastCUDA philosophy, it
was created a first C program for personal computers.

In order to save design time and effort it was employed the already developed
and tested embedded software, and therefore a correct version was successfully
completed. The time consumed in this case for accomplishing the task was reduced
abruptly, down to 19 milliseconds in a laptop and 15 milliseconds in a personal
computer. The characteristics of each platform will be seen more in detail in Chapter
5.I

The last code led to a CUDA version of the recognition algorithm. The
improvements achieved and strategies followed are a topic for a different project and
they are not going to be explained in this research work, although the designing
process was supervised by the author of this Master Thesis. Nevertheless, it can be
anticipated that software functions turned out to be CUDA kernels – “subMeanFace”,
“reduceDims” and “getDistances” - and it was essential to know how to access to data
in parallel. By coalescing data latency is reduced dramatically and the use of the
GPGPU becomes more effective.

This face recognition system was also proven with the same average face,
Eigenfaces and database of identities than in the HiReCookie. The results were
obtained for two GPGPUs and written down; consequently they would be seen in
the comparison of Chapter 5.I.

Finally, the CUDA code for recognition was introduced in FastCUDA tools. This
work was proven in a Virtex-6 FPGA with the same input files, but results are not
mature enough and they have not been included in the study yet.

In the next section, specific hardware versions for a WSN node will be detailed. It
is expected to acquire enough speed up for beating all the other solutions in terms of
energy consumed, but first it will be implemented a simple design, and step by step,
higher performance will be achieved.

IV. Hardware Versions

As it was mentioned before, the Image Characterization did not fit well with the
specification of RUNNER, but looking to the future, the system of the starting point
was ported to an up to date AXI AMBA specification. This bus is what the IP core
would need if eventually it was required to compare it with the Xilinx package.

Chapter 3 Requirements and Implementations of Recognition System 55

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

With only this change, the frequency supported by the bus, and thus the
communication between peripherals of the MicroBlaze will be incremented from 83
MHz up to 100 MHz, and more possibilities would be achievable for novel
peripherals.

It was necessary to build a first reconfigurable and simple hardware version
before dealing with memories and faster accesses to memory. Once validated the
system, the possibilities for accelerating it should be explored.

IV.1 Registered Reconfigurable Version

First, it will be see the architecture of the reconfigurable hardware for face
recognition. In addition to the previous design of the system shown in Figure 30, in
Figure 31 it can be observed a new peripheral. It will be tested in an ISE version 13.3
project, which makes use of the XPS platform for the inclusion and design of the
architecture.

Figure 31 Architecture for a simple hardware.

It was developed a simple peripheral for reconfiguration, called “reconf”, which
together with the “hwIcap” employed bus macros in order to define the border of the
reconfigurable area with the static one and link signals between them. The
architecture used for this block takes advantage of this module for the
reconfiguration task.

It was required to define a procedure for synchronising the reception of messages
between each one of the sides of the registers. In this application there were 4 input
registers and 4 more for output data, although only three input and one output
register were necessary.

The output register (number 5) was the one that MicroBlaze should read in order
to reach the results of the calculus, whereas register 0 was where MicroBlaze wrote

56

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

the operation code, register 2 where data input should be introduced and finally,
register 1, where a counter is incremented every time a software loop selected the
written line. This code is correct provided the hardware is faster than software,
which in principle is guaranteed.

It would be worth noting that this system works with a configurable number of
Eigenfaces; the software program in the MicroBlaze can be changed, and the
hardware will work with less than 127 vectors if it was desired, without making any
hardware change.

The hardware block consist of two finite state machines, whose mission was to
detect the command to execute and to change a counter register; and three
instantiated block which made the three main known functions. The implementation
of multiplications was made with DSP blocks of the FPGA, one operation per clock
cycle. The logic inferred for this implementation can be seen in Table 10.

Advanced HDL Synthesis Report

Macro Statistics
MACs : 1
 9x8-to-32-bit MAC : 1
Multipliers : 1
 16x16-bit multiplier : 1
Adders/Subtractors : 11
 15-bit adder : 3
 16-bit addsub : 1
 16-bit subtractor : 1
 22-bit adder : 2
 32-bit adder : 1
 9-bit subtractor : 3
 # Counters : 1
 4-bit up counter : 1

Registers : 483
 Flip-Flops : 483
Comparators : 4
 15-bit comparator greater : 2
 16-bit comparator greater : 1
 32-bit comparator equal : 1
Multiplexers : 293
 1-bit 2-to-1 multiplexer : 261
 15-bit 2-to-1 multiplexer : 11
 16-bit 2-to-1 multiplexer : 2
 2-bit 2-to-1 multiplexer : 4
 2-bit 7-to-1 multiplexer : 1
 32-bit 2-to-1 multiplexer : 13
 32-bit 4-to-1 multiplexer : 1
FSMs : 2

Table 10 Advanced HDL Synthesis Report for the registered system.

A summary table with the resources utilization and the percentage of the total
amount can be seen in Table 11. This hardware system succeeded in reducing the
time down to 7 seconds for the recognition task, mostly due to the acceleration
achieved by using hardware multipliers. However, the synchronisation in data
makes the hardware wait for the software counter, and this issue should be solved
for the last hardware version, by using additional memory or FIFOs. In the following

Chapter 3 Requirements and Implementations of Recognition System 57

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

section it will be shown how Block RAM memory will accelerate the behaviour of the
system.

Device utilization summary:
Selected Device : 6slx150fgg484-2

Slice Logic Utilization:
 Number of Slice Registers: 485 out of 184304 0%
 Number of Slice LUTs: 630 out of 92152 0%
 Number used as Logic: 630 out of 92152 0%

Slice Logic Distribution:
 Number of LUT Flip Flop pairs used: 863
 Number with an unused Flip Flop: 378 out of 863 43%
 Number with an unused LUT: 233 out of 863 26%
 Number of fully used LUT-FF pairs: 252 out of 863 29%
 Number of unique control sets: 22

IO Utilization:
 Number of IOs: 148
 Number of bonded IOBs: 0 out of 338 0%

Specific Feature Utilization:
 Number of DSP48A1s: 2 out of 180 1%

Table 11 Device utilization summary for the registered system.

IV.2 BRAM Memory Version

The final system should endure an increase in the performance, having certain
independence from the software part of the system. In Figure 32 the main modules
are depicted. The major difference with the previous model is the appearance of
three Block RAMs. These memories are going to make possible to have available the
data at any point of the hardware operation. Besides, any delay but the required in
processing should appear.

58

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

Figure 32 Block diagram for the last hardware version.

The strategy changes, and now, although the finite state machine will also seek
for commands, in this case, one single edge is able to launch the whole system.
Addresses will be automatically handled by this hardware, and a complex control of
the process will be necessary for taking into consideration the latency between
blocks. Big multiplexers will select one among several signal buses. In the Figure 33
the block diagram of the system appears.

Figure 33 Detail from the inside of the peripheral.

Chapter 3 Requirements and Implementations of Recognition System 59

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

It would be worth highlighting the meaning of the names in the blocks. Each
large block about the outsides of the picture represents one block RAM. The BRAM1
is where the picture taken by the camera will be, for the first part of the algorithm,
when the average face – placed in BRAM2 – should be subtracted to it. Once this step
is finished, the BRAM3 stores the subtracted image resulting. The MicroBlaze then
reads that the hardware has finished and asks for a second part.

This time, the previous result with the Eigenvectors should be multiplied and
accumulated. The average face will be replaced by the first vector before launching
the projection part, and a first coordinate will be calculated afterwards. This process
is repeated until the end of the list of Eigenfaces. It should be noted that this is the
most computationally expensive step.

One more time, MicroBlaze reads that the second step has finished and launches
the third and last petition. The Euclidean Distance is going to be calculated for the
configurable value of identity, which is a configurable initial address in the
peripheral.

The rest of the blocks are either a block for reading (R) or for writing (W). The
first number of their names identifies the BRAM in touch with them while the other
two are the size of the data (08, 16 or 32).

Advanced HDL Synthesis Report

Macro Statistics
Multipliers : 2
 18x18-bit multiplier : 1
 9x8-bit multiplier : 1
Adders/Subtractors : 25
 1-bit adder : 1
 16-bit adder : 4
 16-bit subtractor : 5
 17-bit adder : 1
 17-bit subtractor : 1
 18-bit adder : 1
 18-bit subtractor : 1
 2-bit adder : 3
 32-bit adder : 6
 6-bit adder : 1
 9-bit subtractor : 1
Counters : 2
 2-bit up counter : 1
 4-bit up counter : 1

Accumulators : 3
32-bit up accumulator : 1
32-bit up loadable accumulator : 2
Registers : 805
 Flip-Flops : 805
Comparators : 7
 16-bit comparator equal : 2
 32-bit comparator greater : 5
Multiplexers : 180
 1-bit 2-to-1 multiplexer : 70
 16-bit 2-to-1 multiplexer : 16
 17-bit 2-to-1 multiplexer : 1
 18-bit 2-to-1 multiplexer : 1
 2-bit 2-to-1 multiplexer : 9
 32-bit 2-to-1 multiplexer : 41
 36-bit 2-to-1 multiplexer : 1
 4-bit 2-to-1 multiplexer : 7
 8-bit 2-to-1 multiplexer : 30
 8-bit 4-to-1 multiplexer : 3
 9-bit 2-to-1 multiplexer : 1
FSMs : 7

Table 12 Advanced HDL Synthesis Report for the BRAM system

60

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

The hardware inferred from the synthesis process can be seen in Table 12,
whereas the percentage of utilization in this case is included in Table 13.

Device utilization summary:
Selected Device : 6slx150fgg484-2

Slice Logic Utilization:
 Number of Slice Registers: 738 out of 184304 0%
 Number of Slice LUTs: 1186 out of 92152 1%
 Number used as Logic: 1186 out of 92152 1%

Slice Logic Distribution:
 Number of LUT Flip Flop pairs used: 1288
 Number with an unused Flip Flop: 550 out of 1288 42%
 Number with an unused LUT: 102 out of 1288 7%
 Number of fully used LUT-FF pairs: 636 out of 1288 49%
 Number of unique control sets: 22

IO Utilization:
 Number of IOs: 457
 Number of bonded IOBs: 0 out of 338 0%

Specific Feature Utilization:
 Number of DSP48A1s: 2 out of 180 1%

Table 13 Device utilization summary for the BRAM system.

During the designing process it was found one difficulty that it is worth noticing:
due to the large amount of memory in use in this system, a bigger percentage of the
available memory was occupied by the face recognition BRAMs. This led to
extremely longer paths, and failing timing constraints were found.

Many techniques were tried, from rerouting paths up to re-describe VHDL
components. Nevertheless, the answer to this problem was overcome by reducing to
the half the BRAM3. The parity bit of the subtraction was not considered any more,
by truncating always the last bit and considering it always as 0. The loss in precision
was not observable in images and it was admissible, for the reasons exposed in
Chapter 4.I. The reduction in this area, together with the attribute “SIGIS” for clock
and reset signals assured the stability of the data.

Chapter 3 Requirements and Implementations of Recognition System 61

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

The maximum frequency according to the report could be 115MHz, higher
enough for the requested speed. The block has been proven at 100MHz, and it is
possible to reach even higher frequency by studying some optimization in the VHDL
description. However, the results achieved are successful and no more dedication
neither effort is considered for this Master Thesis.

Chapter 4 Verification 63

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Chapter 4. VERIFICATION

The most time-consuming task of the project was undoubtedly the debugging
procedure. For hardware systems, simulations are not always accurate enough, or
simply the synthesis tool decides to implement a higher level of logic and the
behaviour is slightly different from expected and, as a result, the system does not
work.

There were applied five levels of debugging process, which are the following
sections of this Master Thesis.

I. Scripts in MATLAB

There were developed five MATLAB scripts for debugging the numerical result
returned through the Ethernet communication. The first script to take into
consideration is “verif_input_txt.m”, and the average face part of this script is shown
in Table 14. Nevertheless, the whole script would test also the Eigenfaces,
coordinates and two input test images.

%%
% This script test the correctness between the input files (*.txt), and %
% the previous data obtained with Matlab in the main program base.m %
%%
[stat,struc] = fileattrib;
PathCurrent = struc.Name;
% There is no need for recomputing the algorithm in Matlab except if it
% is the first time for you
YesOrNot=input('Re-execute algorithm in Matlab (=1) or read from files (=0)?');
if YesOrNot==1
 base; % Re-execute the recognition algorithm
 YesOrNot=1;
end

%%

64

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

if YesOrNot==1
 file1=u; % Take the golden reference of the average face
else % Read the previously obtained average face
 ID1=fopen([PathCurrent '/_mean_raw.pgm'],'r');
 fgetl(ID1);
 file1=fread(ID1, inf, 'uint8');
 fclose(ID1);
end

ID2=fopen([PathCurrent '/mean.txt'],'r');
[file2, counter1]=fread(ID2, inf, 'uint8');
fclose(ID2);

verif1(:,1)=file1;
verif1(:,2)=file2;
verif1(:,3)=file1-file2; % Error between versions

acum1=0;
for i=1:counter1,
 acum1=acum1+abs(verif1(i,3)); % Accumulate errors
 if verif1(i,3)~=0
 % disp([num2str(i),' has failed!']);
 % break;
 end
end
disp(['There is an error of: ',num2str(acum1*100/256/counter1),' % in mean.']);

%%%

Table 14 Part of the first MATLAB script.

As can be easily deduced, the program compared two results: the golden
reference or secure solution, and the new one. In this case, it is compared the input
file, to be sent into the RAM memory, against the calculated by MATLAB. It is worth
noting that M and C programs truncate real precision into integer in a different way,
what could cause false errors if this difference is not considered.

Similar codes were implemented for the rest of the scripts. After verifying the
input file to send to the FPGA, it is actually sent to the client, and with the debugging
commands, it can be asked to the FPGA about the stored value in RAM. The
returned average face, coordinates and test images are evaluated with

Chapter 4 Verification 65

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

“verif_input_RAM.m”. However, the Eigenfaces are matched with a different script
“verif_input_vector.m”, mostly because of the long time required for this part of the
verification.

After a recognition task, two more scripts could be used. The script
“subtraction.m“ copes with data transformations required to fit 32 bits architecture of
the MicroBlaze and peripherals into words of 8 bits. Afterwards, the habitual test is
performed.

Finally, the last two parts of the recognition task can be monitored by the script
“rbn.m”. With more than 200 lines of code, this script adapts all the possible
implementations of the algorithm, it calls previous scripts when it is needed and it
makes possible detecting the exactly place where a fail has taken place.

The accuracy was measured for different cases, by accumulating the absolute
value of the error, and expressed as a final percentage. An example of the response in
MATLAB when executing the last script can be seen in Table 15. The case shown is
the less accurate method, and even so, loses are affordable in this system.

>> rbn
Re-execute the calculus of the base? (0=no 1=yes) 0
Is it necessary to recalculate __resJulio_raw.pgm? (0=no 1=yes) 1
Re-execute the calculus of the base? (0=no 1=yes) 1
Number of who is in the input?: 9
Are you testing the registered version (=0) or the BRAM version (=1)?: 1
There is an error of: 39 (equal to 0.0021329 % in the subtraction!
There is an error of: 744285 (equal to 0.00029878 % in the coordinates!
What is the number of the person you are identifying?: (0 = all)50
1 has failed! (with a difference of: 36)
There is an error of: 36 (equal to 0.16786 %) in the Euclidean Distance!

Table 15 Returned messages from MATLAB.

The scripts in MATLAB contributed significantly to the debugging process, and
they measure loses in accuracy. However, a very fast and intuitive debugging
method is explained in the next section.

66

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

II. Image Results

As well as analyse the values returned, it is possible to watch in real time the
image just processed by the HiReCookie. To carry out this action, there were two
types of tests. In the first one, a normalised imaged is introduced as a test image
through Internet, while in the second possibility, the picture is actually taken by
using a real camera of the WSN platform.

Figure 34 shows the results for an ideal comparative, as if there were a previous
detection part working in the system. The greyscales values of the right side of the
picture are the coordinates of individual 1 and its distance with subject 55. After a
linear transformation in order for having values between 0 and 255, the distance was
scored as 55, what means the images are different. To understand this clearly, it
should be known that usual values for different people are about 40, longest
distances around 80 and matches below 10.

Figure 34 Subtracted image of individual 1.

In Figure 35, a real picture is shown. In this case the person is not from the
database, although she scores 34 when comparing with subject 49. It would be worth
noting that a black pixel is a 0 in luminance, and because of that, the background
remains after the subtraction. Nevertheless, Eigenfaces cannot explain those pixels
and they are not taken into account, as if they were in black. So if a rebuilding of this
faces was executed, the background would be black as well.

Figure 35 Unknown person, but within the usual distance between no matches.

Chapter 4 Verification 67

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

It was performed a second test with the real subject 9 in front of the camera, and
he was a perfect match with himself and rejected from other identities of the
database. The Figure 36 shows the observable results of this test.

Figure 36 Original picture, real subtracted and ideally subtracted.

Although it can be hard to center the head accordingly to the desired position,
illumination and pose, the algorithm managed to identify the subject. It has been
demonstrated the feasibility of the recognition system for cooperative environments,
without the necessity of using a detection algorithm.

III. Simulations

The two hardware systems were simulated before doing the synthesis. There are
nine simulations for the BRAM version – subtraction, projection, distance, the global
system, three reader blocks and two more writers - and one for the whole registered
version. It is considered that a full explanation of every simulation would require too
much space, so only one of them is presented here, the one corresponding to the
global simulation of the BRAM system. Figure 37 is the subtraction part of the
algorithm, Figure 38 the projection onto the subspace and Figure 39 the Euclidean
Distance. The three captures of the simulation have blocks in groups of colours, and
similar colours between images imply the same type of operation.

In the first screenshot, for instance, in orange are selected the inputs - “start” and
“valid” signals, “address”, “data_in” and “data_out” –of the red part, which represents
the core of the operation – a subtraction triggered by “do_it_s”, between “data_in_s”
and “refer_s” with a valid result indicated by the signal “write_s”and shown in
“data_out_s” – while in purple the results are written in the correct address of
BRAM3 – “start” selects the correct “init_addr” and “valid” starts putting “data_in” in
“data_out” with the address “bram_addr”.

68

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

Similar pattern is followed for the other two parts of the simulation. In all cases,
yellow shows the external addresses, in red the operation taking part and in blue is
displayed a counter of the progression of the process.

Once studied one case of the ten simulations performed during this research
work, it will be seen in the next section when it was necessary to use an embedded
oscilloscope.

Chapter 4 Verification 69

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Figure 37 Simulation of the subtraction.

70

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

Figure 38 Simulation of the projection.

Chapter 4 Verification 71

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Figure 39 Simulation of the distance.

72

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

IV. ChipScope Analyzer

When neither the scripts, nor images or simulations helped to debug an
unexpected behaviour, it was necessary to use ChipScope Analyzer. This program
acts as it was an embedded oscilloscope for the FPGA. The new horizon that this tool
opens is huge, making possible – although not always so easily – to find failures
where before it was unthinkable.

Nevertheless, every time the user needs to change a signal, the whole design
should be re-synthesised, and this process used to take about 40 minutes for the
actual system. So it only will be employed if there is not any other alternative for
solving the issue.

ChipScope was used in this project for fixing one last error. Between simulation
and results obtained through the debugging socket, there was no match if the
algorithm was completely executed, but they do agree if only part one or part two
were launched. It was though that some optimisation in the implementation process
could be changing the final system, but only with an embedded oscilloscope this
phenomenon could be observed.

It was added to the design a new peripheral, which ChipScope will use for
reproducing the values of the signals on the program waveform. Finally, it was
found that this behaviour was due to the apparition of latency in the process of
reading and writing in the last part of the algorithm. This delay did not appear in
simulation, and it was caused by the implementation tool, when it decided to put
two registers instead of one for improving performance.

The system was finally fixed by changing the VHDL description in the part of the
system involved, and the correctness was successfully verified. The capture of the
results can be seen in Figure 40, where no extra latency is added when comparing to
the initial system.

With the system completely verified at different levels, some tests together with
Nao Robot are going to be related in the next section.

Chapter 4 Verification 73

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Figure 40 ChipScope Analyzer.

74

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

V. Nao Robot

Up to three tests were carried out using Nao Robot and the WSN node. The robot
was a property of a research group in Castilla La Mancha University, and thanks to
previous collaboration they lend the robot to CEI for these three verifications. The
first one was to check the correct interpretation of the commands described in
Chapter 3.III.1.

Through Internet, petitions were sent by the robot and the HiReCookie answered
all the possible combinations. Every one of the answers had a response from the part
of Nao; for instance Nao sent greetings to the person identified, and asked to go
unknown ones, it avoided imaginary obstacles or navigated in an unknown
environment. These performances were made with Choregraphe, the toolkit from
Aldebaran, in a pretty intuitive way of programming (see Figure 41).

Figure 41 Choregraphe tool for developing Nao performances.

It was a remarkable result that, by dedicating little time, the communication
interface was successfully integrated within the first attempt. The work was quite
good coordinated, especially considering that each research group worked from its
location. It was not necessary to be in the same place robot and platform; in fact the

Chapter 4 Verification 75

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

distance between them was 200 kilometres, and the performance was followed via
teleconference.

The second test accomplished was in the CEI laboratory. Nao came to Madrid in
order to prepare a final demonstrator. A local network was established, between
robot, Choregraphe software of the robot and the visual cortex. This time, real
implementations of the recognition system were prepared in the HiReCookie. The
robot can be seen in Figure 42 in the library of CEI, during the trial.

Figure 42 Autonomous robot Nao, from UCLM.

Last, a final review with Spanish Authorities took place in InetSiS offices. The
resolution was truly positive, succeeding in passing the audit.

Chapter 5 Comparison between Alternatives and Further Work 77

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Chapter 5. COMPARISON BETWEEN
ALTERNATIVES AND FURTHER WORK

As the work is almost already done, it only remains to present the results
achieved and study the possible impact this could bring for not finished applications.
In this chapter, a summary table with the main features and results of each solution
is included. Due to the flexibility of the last hardware version, it is proposed to
change some parameters to develop other systems similar to the included in the
study. The last part of the chapter is dedicated to open scopes related to this study:
on the one hand, the face detection for a fully operative recognition system; on the
other hand, the incoming results of FastCUDA tools.

I. Comparison between Different Alternatives

Platforms from different nature have been employed in this research work, and
the results achieved with them are presented in Table 16 and discussed as follows:

 A Laptop Asus. It has a quad-core microprocessor, and a portable version of the
GPGPU GeForce GT 540M. Therefore, it was used for analysing two versions of
the recognition algorithm, one in CUDA and another in C language. The
performance of Laptop Asus in terms of time was very promising, although if the
energy is what really matters, it must be said that this platform was beaten by the
FPGA.

 Personal computer DELL. It has a previous generation of a desktop quad-core
microprocessor. Nevertheless, the GPGPU that carries this platform is one of the
most powerful – and expensive – of the market. The personal computer was used
for contrasting the previously obtained results with a system that may have a
more computing power. The time required to do the task with this device is even
lower than with the previous one, but when it comes to energy, the personal
computer becomes the real loser, not to speak about the cost of the platform.

 FPGA Spartan-6 in a High Performance Wireless Sensor Network node. The core
of this Master Thesis. By using the available resources suitably, this core has
beaten all the previous systems. It would be worth noting that its possibilities are
not over yet, and further work is possible, although such research overtakes the

78

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

already achieved purpose of this Master Thesis. In Chapter 5.II.1 it is presented
how it would be possible to increase the speed of the last solution even more.
Moreover, it should be considered that this platform has the ability to switch
completely off the FPGA if processing tasks are not required. This specific feature
makes this platform far the best option of all the considered.

Device type Version Main

features

Average

power (W)

Time

 (ms)

Energy

(J)

Price on

Market (€)

Laptop Asus CPU 2.20GHz

i7-2670QM

6GB RAM

6MB cache

45 19 0.855 120

GPGPU 1.33 GHz

GeForce GT 540M

2GB

98 Cores

35 4.2 0.147 92

PC DELL CPU: 2.80GHz

i7-870

4GB RAM

8MB cache

170 15 2.550 140

GPGPU 1.15 GHz

Tesla G2075

4GB

448 Cores

238 2.1 0.500 1470

FPGA Spartan-6

XC6SLX150

CPU 100MHz

MicroBlaze

32 MB RAM

64KB BRAM

1.31 8000 10.48 116

Hardware

Registered

3 input

1 output

1.33 7000 9.31 116

Hardware

BRAMs

32 KB x2

 + 32 KB

1.35 30 0.0403 116

Table 16 Energy and price comparison of the systems

Only the processing unit of each device has been considered. However, for the
four first results, there have been taken into account tables of average power
consumption - thermal design power in the i7-2670QM, average power consumption
while computing in the others – found in manufacturer’s documentation, while in
the remaining three cases – the HiReCookie platform, which has independent power
islands - a real oscilloscope was used for measuring the voltage in a Shunt resistor,
after amplified with an INA333 instrumentation amplifier.

Even though only the processing units of the devices have been taken into
consideration, the whole device will be consuming energy in a real system. It has
been measured that, in average, the 85% of the total amount of energy consumed in
the WSN node case was due to the FPGA. The large amount of peripherals in a
computer suggests that this percentage is lower for these devices, what would make
even higher the difference if it was considered the whole machine.

Chapter 5 Comparison between Alternatives and Further Work 79

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

However, it was not possible to measure this data in this research work, so the
lector is invited to study the relationship between the percentages of energy
consumed in computers by the processing unit to the whole device itself, in
comparison with the known 85% for the FPGA’s processing unit of the HiReCookie
platform.

II. Flexibility of the BRAM Version

The possibilities of exploitation of the last hardware system were not over after all
the improvements explained before. The description of the VHDL code was highly
configurable, and it is desired to expose two actual possibilities, envisaged during
the designing process. The first one is related to the possibility of accelerating even
more the system, while the second deals with area reduction.

II.1 More DSPs (Multipliers)

The current solution utilised two DSP48A1s, one 9x18bit for multiplying and
accumulating the projection of every coordinate of the system, and one 18x18bit for
subtracting, multiplying and accumulating the Euclidean distance. One possibility
for speeding up the system could be the following:

 To split the BRAM1, BRAM2 and BRAM3 in, for instance, 4 BRAM each one, with
independent output ports and addresses, or even one BRAM each but with
multiple outputs and one single address port with the ability of pointing to four
data in parallel.

With this approach it would be affordable to have – following the example – four
DSPs for every duty. Since the projection stage is the most time consuming task –
more than 99% of the time of the whole process - it is expected to reduce up to four
times the interval required and also to reduce the energy consumed in the end.

The reason why this will not lead to an observable increment of the energy is that
DSPs are there but not always in use. In Figure 43 it can be observed that in a clock
region there are up to 8 DSPs, so the example would be the limit for a simple
reconfigurable hardware. If it would be desired to have better performance than four
times less time, other approaches, such as the Virtual Borders of the DREAMS tool,
should be considered.

80

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

Figure 43 Resources of a clock region.

II.2 Less BRAM Utilization

As it was mentioned in Chapter 3.IV.2, too much BRAM could cause timing
problems. In addition to this fact, the amount of RAM blocks of a clock region is
limited. The easiest solution to this problem is to use less BRAM memory, for
instance, 16 KB instead of 32KB. This will only imply for the system, as it is designed,
to call two times every hardware function, by writing the corresponding value into
the software accessible registers. The blocks that manage the memories are thought
to deal with this situation, so it would not be complex to reduce resources utilisation
– up to a point – by using this technique.

In Figure 44 it is shown the available resources in a clock region in comparison
with the BRAM block. It would be highlighted that in every clock region it is only
available a total amount of 24KB of BRAM. Once again, if reconfiguration is going to
be made with bus macros, the amount of memory should be reduced as it has been
explained, or another approaches as the Dream Tool should be employed.

Chapter 5 Comparison between Alternatives and Further Work 81

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Figure 44 Required resources and available in a clock region.

Due to the interest in using this hardware system together with future J.
Valverde’s PhD Thesis, he is encouraged to use the results here exposed. Because of
his approach limitation of addressing only 4kB of BRAM, it is proposed to use 1KB
BRAM blocks for input memory blocks, and 2KB for the output BRAM.

III. Face Detection Incorporation

Thanks to the close collaboration with Santiago Muñoz, many results related with
CUDA code were obtained. He took advantage of the recognition software for
developing the first CUDA code of the recognition system. Afterwards, he designed
a face detection system running in GPGPUs; it would be a good idea to include his
code to the HiReCookie platform in order to complete the feedback circuit.

As it was mentioned in Chapter 2.III, Eigenfaces can be used for detection, but it
is not a very smart procedure. There would remain two alternatives, either to include
a software embedded program, or to implement a hardware detection system. The
Viola-Jones algorithm used in CUDA by Santiago is quite complex to be executed in
real time by MicroBlaze, so it only will be considered the hardware version.

However, there is a previous work that matches with the aim proposed; Matai et
al. [54] have designed and implemented an FPGA-Based Real-Time Face Recognition
System, based on Viola-Jones algorithm for detection, and Eigenfaces for recognition.
The only contribution that can be made is to implement this system using FastCUDA

82

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

tools, and it is left as a future line because at the present it is at the development
stage yet.

IV. FastCUDA Tool Work

As FastCUDA project was taking shape, it was necessary to contribute in some of
its stages, such as the research of algorithms to be implemented, and the adjustment
of the tool given by the partners. This last assignment was part of the final
deliverable of the work, and some syntheses of CUDA kernels were made for
including results in the report.

For merely having an idea of the complexity of this work, it would be said that it
required using a virtual machine with a Linux distribution, in order to compile a
Graphical User Interface based in Java, which used scripts (BASH, PERL, TCL and
more) for translating CUDA code to SystemC. The SystemC is included afterwards in
a Vivado Project that makes possible to unroll loops, and finally, different
implementations for FPGA resulted.

During the process, some reports were parsed, and unfortunately, the files were
different between Vivado versions, so this had to be fixed. In the end, the tool started
producing correct VHDL codes to be included as blocks of the FastCUDA system. A
screenshot of the Tool is shown in Figure 45.

This chapter finishes with this last section, in Chapter 6 will be seen the
conclusion and futures work related to this Master Thesis, as well as the
publications, presentations and dissemination.

Chapter 5 Comparison between Alternatives and Further Work 83

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Figure 45 Screenshot of the FastCUDA tool.

Chapter 6.Conclusions and Future Work 85

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Chapter 6. CONCLUSIONS AND FUTURE
WORK

After the progress achieved in RUNNER, commercial robots will take advantage
of this research work: Aldebaran-Robotics have announced the intention to inherit
the advances in their – still developing nowadays - future robot ROMEO, shown in
Figure 46.

Figure 46 Left side: prototype of ROMEO, right side: simulation of the future application.

These new advances in the area of vision systems together with robotics can be
exploited with goodwill purposes. As it was studied by Avvenuti [55] and at the
same time proposed by Aldebaran-Robotics in their Web Site [56], WSN and robots
can help people with difficulties, such as elder people suffering Alzheimer Disease,
or even kids with Autism, on the process of learning and establishing more
successful social interactions with other people. Voice recognition and interpretation,
together with object/face recognition, are the key factors for the inclusion of
android-robots for domestic chores.

86

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

On the other hand, great efforts are being made by research groups and
companies in order to facilitate the use of FPGAs among software developers, with
the purpose of taking advantage of the better efficiency and parallel computing of
those devices over microprocessors. As it has been seen, these two branches have
been the backbone in this Master Thesis, so the conclusions they have brought are
detailed in the following section.

I. Conclusions

 In this Master Thesis it has been established the specifications for developing a
face recognition system in a variety of platforms at the same time: MATLAB
running in a personal computer, C code in an embedded microprocessor
(MicroBlaze), a simpler reconfigurable hardware for an FPGA-based platform, a
flexible hardware for higher performance, and finally a C and a CUDA code for a
laptop and a personal computer.

 After having studied the opportunities that recent solutions can bring to the
design of a novel face recognition system, it has been proven the feasibility of the
algorithm chosen with a first version using MATLAB tools. However, the scope
of the applicability of the CUDA code, being capable to port it to most of the
architectures that have been tested throughout this project, once the flow
proposed in FastCUDA is fully developed and settled, gives a high opportunity
to a one-effort-fits-all approach for SW, GPU and HW based systems.

 In addition to the image processing task required for building a database of faces
and a set of identities, two applications were developed in order to verify the
main concepts presented in the theory of the Eigenfaces algorithm.

 One software and two hardware versions of a reconfigurable face recognition
system have been implemented in a real FPGA-based WSN node, followed by
consecutive processes of verification and testing the correctness of the different
versions. Besides, it has been given the required information for designing two
more systems for both a laptop and a desktop, and supervised their development.

 Finally, it has been created a verification system that facilitates the debugging
process when designing a new recognition system, as well as it tests the
numerical precision of every solution by comparing the results with a golden
reference. The results show to be uneven, in the sense that some implementation
details which might look like second order decisions, have a critical impact in
performance, so a detailed knowledge of the architecture, and what is accelerated
and what is not, is required.

Chapter 6.Conclusions and Future Work 87

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

 The results of all the systems were presented in a summary table. It was obtained
that the hardware version requires 3.65 times less energy than the best of the
other solutions. Nevertheless, the methodology and design flow followed with
this type of solutions is much more complex and more time-consuming.

 As an extension to the study, it has been explored novel approaches such as
MATLAB HDL Coder, Vivado HLS and FastCUDA tool flow. These techniques
will make easier and faster the task of designing hardware, while bringing
software programmers the possibility of taking advantage of FPGAs, and
therefore it is expected a big expansion in this direction.

II. Future Work

Taking into consideration the performance obtained in the recognition system
implemented in hardware, the speed could only be increased by following these two
methods, which inevitably would increment as well the resources utilisation:

 On the one hand, it would be interesting to split the last recognition system
designed in hardware into multiple parallel processing elements in order to
analyse the achievable performance.

 On the other hand, it is expected to have an improvement in the speed if the RAM
memory is accessed in a burst manner, filling the internal BRAM memory at
higher rate.

As it was explained before, it would be interesting to include the first step of the
full recognition process, the face detection, to obtain multiple normalised faces,
However, it would require to be executed in real time.

 It is possible to use the Eigenfaces algorithm with the purpose of detecting faces
in the HiReCookie platform. However, it seems to be more practical to implement
a Viola-Jones algorithm and shift different windows along the image.

 It is desired to take advantage of the FastCUDA tool flow in order to create new
hardware blocks. One last version made by this automatic process would enrich
the proposed comparison, having shared memory and coalesced accesses.

 It was proposed to use a new set of images, incrementing the number of them,
and including different illumination conditions and poses. Moreover, it should be
considered to develop some script for automatically normalise the pictures.

 In order to make the results achieved more attractive, it is possible to substitute
the actual client, based on a terminal black window, for a user-friendly Graphical

88

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

User Interface application, which would show images in real time by the simple
action of pressing buttons.

In the upcoming future, professors could have a device similar to Google Glasses
for having a daily register of the students. Maybe this dream is closer after this
research work.

Figure 47 New scenario for a recognition system.

III. Publications and Presentations

A certain number of presentations and documents have been produced into the
framework of this Master Thesis:

 During the performance of this work, was maintained a direct collaboration in the
creation of a starter guide for the use of the reconfiguration capabilities of the
HiReCookie platform. The resulting document is called HiReCookie
Reconfiguration Guide [57], and it is expected to serve as the manual of how to
use ISE tools for reconfiguration, for future students at CEI.

 During the Posters Session of the Annual Meeting 2013, one demonstration took
place in the Centre of Industrial Electronics. Thorough this opportunity, it was
presented the progress on the RUNNER project, and visitors were able to use the
platform, take pictures with it and ask any question they had about the work.
Moreover, there was collaboration with the presentation of one of the conferences
held in this event.

 A second demonstration was organised for the “Seminario Anual de Automática,
Electrónica Industrial e Instrumentación 2013 (SAAEI'13)”. In this case, the
attendants could observe the functioning of an application that uses WSN nodes
in security areas. The application monitored with cameras the scenario when an
event was triggered by a luminosity sensor.

Chapter 6.Conclusions and Future Work 89

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

 In order to verify the correct performance of RUNNER in Spain, an external audit
was carried out by “Centro para el Desarrollo Tecnológico Industrial (CDTI)”. In the
meeting was necessary to explain to National Authorities the details of the work
completed so far, as well as it was demonstrated the operation with an integration
of the recognition system and the robot Nao.

 On November fourth, 2013, a Monday Seminar was held by the author of this
Master Thesis. The purpose of such meetings is to present to workmates and
professors the existing achievements, difficulties found and future of the
undertaken projects.

 It is scheduled to write a paper with the methodology and results of this work,
together with Santiago Muñoz, after the redaction of this Master thesis. Hopefully
it would be accepted and presented, but it is still in the first stage of the process of
creation.

IV. Dissemination

This Master Thesis has certain continuity with current works, and it will also lead
to future final degree projects:

 The Stereo Matching block was designed by Federico Pérez in software and
hardware, using respective versions of the Face Recognition module as template.
For taking advantage of the hardware acceleration, he will start from the last
version of the face recognition block in order to use BRAMs.

 As it was mentioned above, GPGPUs versions of the recognition and detection
systems have been developed by Santiago Muñoz, what will result in his final
degree project. The author of this Master Thesis led his first steps with the basis of
the algorithm and continued supervising his work all along its development.

 One extension of this work is the final degree project called: “Motion detection with
3D cameras for a collision warning system”. This work will study the motion
detection algorithms in existence, and will implement a new block for the
HiReCookie platform with the purpose of detecting and avoiding projectiles.

 Juan Valverde in his PhD thesis is working on a novel reconfigurable architecture
that will face the triangle: consumption, computing power and reliability. This
design is being implemented on HiReCookies, and the Face Recognition
hardware has been provided for inclusion as an example of applicability.

 On December second, 2013, a final review of the project RUNNER took place
between the members of the council. In the meeting it was concluded that every
group succeeded in accomplishing their respective task. What is more, Aldebaran

90

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

will launch a novel generation of robots taking advantage of the satisfactory
contributions of the consortium.

References 91

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

REFERENCES

[1] Intel Corporation, “www.intel.es,” January 2014. [Online]. Available:

http://www.intel.es/content/www/es/es/processor-comparison/processor-

specifications.html?proc=75133.

[2] MediaTek Inc, “www.mediaTek.com,” November 2013. [Online]. Available:

http://www.mediatek.com/_en/03_news/01-2_newsDetail.php?sn=1127.

[3] MediaTek Inc, “www.mediatek.com,” January 2014. [Online]. Available:

http://www.mediatek.com/_en/Event/201307_TrueOctaCore/tureOcta_.php.

[4] K. Su, J. Li and H. Fu, “Smart City and the Applications,” in International Conference on

Electronics, Communications and Control (ICECC), Zhejiang, 2011.

[5] G. Cardone, P. Bellavista, A. Corradi and L. Foschini, “Effective collaborative monitoring in smart

cities: Converging MANET and WSN for fast data collection,” in Kaleidoscope 2011: The Fully

Networked Human? - Innovations for Future Networks and Services, Proceedings of ITU, Cape

Town , 2011.

[6] M. Sen, A. Dutt, S. Agarwal and A. Nath, “Issues of Privacy and Security in the Role of Software in

Smart Cities,” in International Conference on Communication Systems and Network Technologies

(CSNT), Gwalior, 2013.

[7] L. Wei, C. Ming and L. Mingming, “Information Security Routing Protocol in the WSN,” in Fifth

International Conference on Information Assurance and Security, Xian, 2009.

[8] Y. Wang, X. Wang, B. Xie, D. Wang and D. Agrawal, “Intrusion Detection in Homogeneous and

Heterogeneous Wireless Sensor Networks,” Transactions on Mobile Computing, vol. 7, no. 6, pp.

698 - 711, 2008.

[9] R. Heitmeyer, “Biometric identification promises fast and secure processing of airline passengers,”

ICAO Journal, vol. 55, no. 9, pp. 10-11,27, 2000.

[10] Cognitec Systems, “www.cognitec-systems.de,” 2014. [Online]. Available: http://www.cognitec-

systems.de/facevacs-videoscan.html.

[11] A. Gallego, J. Mora, A. Otero, R. Salvador, E. de la Torre and T. Riesgo, “A Novel FPGA-based

Evolvable Hardware System Based on Multiple Processing Arrays,” in Parallel and Distributed

Processing Symposium Workshops & PhD Forum (IPDPSW), Cambridge, MA , 2013.

[12] M. Lombardo, J. Camarero, J. Valverde, J. Portilla, E. de la Torre and T. Riesgo, “Power

Management Techniques in an FPGA-Based WSN Node for High Performance Applications,” in

International Workshop on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC),

York, 2012.

[13] J. Ascenso and F. Pereira, “Lossless compression of binary image descriptors for visual sensor

networks,” in International Conference on Digital Signal Processing (DSP), Fira, 2013.

[14] J. Valverde, A. Otero, M. Lopez, J. Portilla, E. d. l. Torre and T. Riesgo, “Using SRAM Based

FPGAs for Power-Aware High Performance Wireless Sensor Networks,” Sensors, pp. 2667-2692,

2012.

[15] M. Kaddachi, L. Makkaoui, A. Soudani, V. Lecuire and J. Moureaux, “FPGA-based image

compression for low-power Wireless Camera Sensor Networks,” in International Conference on

Next Generation Networks and Services (NGNS), Hammamet, 2011.

[16] H. Fu, H. Ma and L. Liu, “Robust Human Detection with Low Energy Consumption in Visual

Sensor Network,” in International Conference on Mobile Ad-hoc and Sensor Networks (MSN),

Beijing, 2011.

[17] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T. Yan, L. Gu and G.

92

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

Zhou, “VigilNet: An Integrated Sensor Network System for Energy-Efficient Surveillance,” ACM

Transactions on Sensor Networks, vol. 2, no. 1, pp. 1-38 , 2006.

[18] J. Portilla, T. Riesgo and A. De Castro, “A Reconfigurable Fpga-Based Architecture for Modular

Nodes in Wireless Sensor Networks,” in Southern Conference on Programmable Logic, 2007. SPL,

Mar del Plata, 2007.

[19] P. Latha and M. A. Bhagyaveni, “Reconfigurable FPGA Based Architecture For Surveillance

Systems In WSN,” in International Conference on Wireless Communication and Sensor Computing

(ICWCSC), Chennai, 2010.

[20] J. Camarero, Design and implementation of a reconfigurable hardware system for 3D vision

applications, Madrid: Final Degree Project UPM ETSII, 2012.

[21] SMEs project co-funded under EU's seventh framework (FP7), “FastCUDA,” January 2014.

[Online]. Available: http://fastcuda.eu/.

[22] Inetsis, “http://gforgegroup.com,” 2014. [Online]. Available: http://gforge.inetsis.es/.

[23] OpenCV.jp, “OpenCV.jp,” 2013. [Online]. Available: http://opencv.jp/opencv-

1.0.0_org/ChangeLog.

[24] libface Face Recognition Library, “http://sourceforge.net/projects/libface/,” February 2011. [Online].

Available: http://libface.sourceforge.net/file/Home.html.

[25] P. Kruizinga, “The Face Recognition Home Page,” 2013. [Online]. Available:

http://web.archive.org/web/20030602192115/http:/www.cs.rug.nl/~peterkr/FACE/face.html.

[26] P. Belhumeur, J. Hespanha and D. Kriegman, “Eigenfaces vs. Fisherfaces: recognition using class

specific linear projection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

19, no. 7, pp. 711-720, 1997.

[27] A. Gupta, K. Ravi, M. Gupta and K. Gupta, “ADT: Age determination technique,” in Proceeding of

International Conference on Methods and Models in Computer Science, Delhi, 2009.

[28] N. Kumar, A. Berg, P. Belhumeur and S. Nayar, “"Attribute and simile classifiers for face

verification,” in International Conference on Computer Vision, Kyoto, 2009.

[29] S. Z. Li and A. K. Jain, Handbook of Face Recognition, Second Edition ed., London: Springer, 2011.

[30] W. Zhao, R. Chellappa, P. J. Phillips and A. Rosenfeld, “Face recognition: A literature survey,”

ACM Computing Surveys (CSUR), vol. 35, no. 4, pp. 399-458, 2003.

[31] R. Grimsdale, F. H. Sumner, C. Tunis and T. Kilburn, “A system for the automatic recognition of

patterns,” Proceedings of the IEEE on Radio and Electronic Engineering, vol. 106, no. 26, pp. 210-

221, 1959.

[32] F. Jin, J. Liu and W. Hou, “The application of pattern recognition technology in the diagnosis and

analysis on the heart disease: Current status and future,” in Control and Decision Conference

(CCDC), Taiyuan, 2012.

[33] V. Blanz and T. Vetter, “Face recognition based on fitting a 3D morphable model,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 9, pp. 1063-1074, 2003.

[34] A. M. Bronstein, M. M. Bronstein and R. Kimmel, “Three-Dimensional Face Recognition,”

International Journal of Computer Vision, vol. 1, no. 64, pp. 1, 5-30, 2005.

[35] M. Turk and A. Pentland, “www.vision.jhu.edu,” 2008. [Online]. Available:

http://www.vision.jhu.edu/teaching/vision08/Handouts/case_study_pca1.pdf.

[36] Yale University, “www.vision.ucsd.edu,” 2001. [Online]. Available:

http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/Yale%20Face%20Database.htm.

[37] Massachusetts Institute of Technology, Center for biological and computational learning, “Face

Recognition Database,” MIT, 2003. [Online]. Available: http://cbcl.mit.edu/software-

datasets/heisele/facerecognition-database.html.

[38] AT&T Laboratories Cambridge and Cambridge University Computer Laboratory, “The Database of

Faces (The ORL Database of Faces),” The Digital Technology Group, 2002. [Online]. Available:

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

[39] National Institute of Standards and Technology, “www.nist.gov,” 2011. [Online]. Available:

http://www.nist.gov/itl/iad/ig/colorferet.cfm.

[40] M. Grgic and K. Delac, “Face Recognition Homepage,” VCL, 2013. [Online]. Available:

References 93

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

http://www.face-rec.org/databases/.

[41] M. Grgic and K. Delac, “Face Recognition Homepage,” VCL, 2013. [Online]. Available:

http://www.face-rec.org/algorithms/.

[42] Y. Jiang and P. Guo, “Comparative studies of Feature Extraction methods with application to face

recognition,” in International Conference on Systems, Man and Cybernetics, . ISIC, Montreal,

Quebec, 2007.

[43] OpenCV Dev Team, “FaceRecognizer - Face Recognition with OpenCV,” 2013. [Online].

Available: http://docs.opencv.org/trunk/modules/contrib/doc/facerec/.

[44] Mashape, “list of 50+ Face Detection / Recognition APIs, libraries and software,” 2013. [Online].

Available: http://blog.mashape.com/post/53379410412/list-of-50-face-detection-recognition-apis.

[45] The MITRE Corporation, “Open Source Biometric Recognition,” OpenBR, 2013. [Online].

Available: http://openbiometrics.org/.

[46] C. S. S. Prasanna, N. Sudha and V. Kamakoti, “A principal component neural network-based face

recognition system and ASIC implementation,” in Proceedings on International Conference on VLSI

Design, 2005.

[47] Xilinx Inc, “LogiCORE IP Image Characterization v2.0,” 2011. [Online]. Available:

http://www.xilinx.com/support/documentation/ip_documentation/v_ic/v2_0/pg015_v_ic.pdf.

[48] M. Kirby and L. Sirovich, “Application of the Karhunen-Loeve procedure for the characterization of

human faces,” Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 103-

108, 2000.

[49] M. Turk and A. Pentland, “Face recognition using eigenfaces,” Proceedings on Computer Vision and

Pattern Recognition, pp. 586,591, 1991.

[50] S. Zhang and M. Turk, “www.scholarpedia.org,” 2012. [Online]. Available:

http://www.scholarpedia.org/article/Eigenfaces.

[51] P. Kulkarni, D. Ganesan, P. Shenoy and Q. Lu, “SensEye: a multi-tier camera sensor network,” in

Proceedings of the 13th annual ACM international conference on Multimedia, New York, 2005.

[52] Y.-C. Tseng, Y.-C. Wang, K.-Y. Cheng and Y.-Y. Hsieh, “iMouse: An Integrated Mobile

Surveillance and Wireless Sensor System,” Computer, vol. 40, no. 6, pp. 60-66, 2007.

[53] V. Saishanmuga and S. Rajagopalan, “A Neuro-Genetic System for Face Recognition,” International

Journal of Computer Science Issues (IJCSI), vol. 9, no. 3, pp. 263-267, 2012.

[54] J. Matai, A. Irturk and R. Kastner, “Design and Implementation of an FPGA-Based Real-Time Face

Recognition System,” in Field-Programmable Custom Computing Machines (FCCM), Salt Lake

City, UT, 2011.

[55] M. Avvenuti, C. Baker, J. Light, D. Tulpan and A. Vecchio, “Non-intrusive Patient Monitoring of

Alzheimer's Disease Subjects Using Wireless Sensor Networks,” in World Congress on Privacy,

Security, Trust and the Management of e-Business, 2009.

[56] Aldebaran-Robotics, “www.aldebaran-robotics.com,” 2014. [Online]. Available:

http://www.aldebaran-robotics.com/en/Solutions/For-Autism/The-Ask-NAO-initiative.html.

[57] M. López, J. Camarero, B. López and J. Valverde, HiReCookie Reconfiguration Guide, Madrid: CEI

ETSII UPM , 2013.

Annex 1.Table of Identities. 95

CPU/GPU/HW comparison of an Eigenfaces face recognition system.

Annex 1. Table of Identities

N Name N Name N Name

1 David Aledo 44 Fátima Hernández 87 Alejandro Pozo

2 Pedro Alou 45 Elena Hernanz 88 Roberto Prieto

3 JL Aparicio 46 Pedro Herranz 89 Remi Pujo

4 Rafael Asensi 47 Juan Herrero 90 Regina

5 Jorge Arraez 48 Fermin Holguin 91 Alberto Rodríguez

6 María Arias 49 Cristina iglesias 92 Antonio Rodríguez

7 Laura Bonacasa 50 Diego Isla 93 Alfonso Rodríguez

8 Yann Bouvier 51 Sisi Zhao 94 Ángela Rojas

9 Julio Camarero 52 Leo Laguna 95 Víctor Rosello

10 Rubén Carnero 53 Eduardo Lezcano 96 Nieves Rubio

11 Giuse Cattalanoto 54 Manuel Llinas 97 Rubén Salvador

12 JA Cobos 1 55 Miguel Lombardo 98 Ignacio Sánchez

13 JA Cobos 2 56 Blanca López 99 Miguel Sánchez

14 Jorge Cortes 57 Carlos López 100 Pablo San Román

15 Justo Cubero 58 Fernando López 101 Mayid Shawi

16 Dejana Cucak 59 Victoria Maigler 102 Marcelo Silva

17 Javier Cuellar 60 Manu 103 Ismael Simon

18 Javier de Frutos 61 Daniel Martel 104 Tamara Sotorrio

19 E de la Torre 62 Alfonso Martín 105 Giuliano Sperandio

20 Miriam del Viejo 63 Marta Martín 106 Vladimir Svikovic 1

21 Daniel Díaz 64 Alfonso Martínez 107 Teresa Riesgo 1

22 Verónica Díaz 65 Sergio Mate 108 Teresa Riesgo 2

23 Borja Díez 66 David Meneses 109 Javier Torre

24 Benoit Duret 67 Sergio Merino 110 Yago Torroja

25 Yana Esteves 68 Teresa Merino 111 Javier Uceda

96

CPU/GPGPU/HW comparison of an Eigenfaces face recognition system.

26 Luis Fernández 69 JM Molina 112 Alberto Valdés

27 Alej Fernández 70 Mariana Molina 113 Juan Valverde

28 JM Fernández 71 Javier Mora 114 Pablo Varela

29 Narciso Ferrero 72 Ángel Morales 115 Miroslav Vasic

30 Iván Flores 73 Félix Moreno 116 Filip Veljkovic

31 Airan Frances 74 JA Moreno 117 Sanna Vesti

32 Ángel Gallego 75 Gabriel Mujica 118 Mónica Villaverde

33 Óscar García 76 Kathleen Muller 119 Vladimir Svikovic 2

34 Alejandro García 77 Ana Neira 120 Wei Li

35 Julio García 78 Noemí Nogar 121 Fernando Pascual

36 Carmen González 79 Jesús Oliver 122 Elena Quesada

37 Miguel González 80 Andrés Otero 123 Natalia Pozhilova

38 Luis Guijarro 81 Zoran Pavlovic 124 Carlos Tejedor

39 Guixuan 82 Pengming Cheing 125 Rafael Zamacola

40 Danping He 83 David Pérez 126 Enrique Sánchez

41 Wei He 84 Federico Pérez 127 Adrián Peña

42 Nico Hensgens 85 Carlos Pizarro 128 Brad Pitt

43 Álvaro Hernández 86 Jorge Portilla -

