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Powercad 
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PowerSim 

Bypass 

Line 

Battery 

PFC Boost 

Average current control 

HBCC 

Voltage mode 
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Tramst 
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Demomag 
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Scope 

Automovile 

Aeronautics 

Aerospace 

Data Servers 
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From the COMPONENT 

to the SYSTEM 

Virtual Prorotyping 
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Component Level 
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PExprt Model 

Over-Voltage at the Switch because  

of the leakage Inductance 

Converter Losses: 1.7 W 

Saturation & Hysteresis 

Virtual Prototyping 
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Virtual Prototyping 
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But for SYSTEM INTEGRATION, 

you need top-down approach 

Virtual Prototyping 
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System level 
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Protections 

dc/dc converters 

Filters 

Drivers 

Non-linear loads 

Validation 

SABER  sketch 
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inrush current (32V)
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Large signal instability 

(during start-up) 
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BR&TE 
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Modeling Power Electronics for Space 

LISA Pathfinder 

Solid State Power Controllers (SSPCs) 
Modeling and simulation of  
solar powered distributed power architectures 

http://www.activemedia.com.sg/IMAGES/MATLAB-logo.JPG
http://crisa.es/index.htm
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Fuel Cell powered Power Electronics 

•More Electric Aircraft Arquitectures modeling and 
simulation 
•High Voltage Distribution Network (270VDC) 
•Intelligent load management 
•Auxiliary Power Units based on Fuel Cells 

INNOVA “Power distribution and management of 
High Voltage loads” 

CENIT DEIMOS “ Development and Innovation on 
Polimer Membrane and Solid Oxid Fuel Cells 
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BATTERY MODELING 
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BATTERY MODEL 

 

 

 INTERNAL PARAMETERS  

 INPUTS 

         -INSTANT CURRENT 

          -INSTANT TEMPERATURE 

          -NUMBER OF  CELLS 

 

 

 OUTPUTS 

       -STATE OF CHARGE 

       -CELL VOLTAGE 

       -BATTERY VOLTAGE 

       -INSTANT AND GLOBAL  

       DISCHARGE TIME 
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 Simplorer  Development 

BLOCKS 
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Validation 

 

 LI-IÓN 

  BATTERY HP 1100mAh  3.7v 

Current discharge 0.27C 
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Motivation 

 Every electric circuit requires protection against shortcircuits and 

overloads. 

 The rest of components need to be protected and isolated from 

the source of failure. 

 There are many kinds of switches available: 

 

      Fuses              Circuit Breakers              SSPCs 
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Model scope 

 Many types of switches - difficult development of a general model if 

trying to reproduce its physical components.  

Air Circuit 

Breaker 

Bimetalic 

strip 

Magnetic  

Circuit Breaker 

X-ray  

Thermal Circuit  

Breaker 
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Behavioral Model 

Main Circuit 

Model I – Calculates the Trip time according 

to the Tripping-Time Characteristics 

Input – I (A) Output – t 

(s) 

Model II – Data acquisition (Left) and 

Simimulation Data Comparator (Right) 

Model III – Arc Extinction 

The main strength of this model is that 

its parameters: R4, R5, C3, C4 can be 

readjusted to emulate the behavior of 

any switching device tested.  

Data acquisition and               

Look-up Table Configuration 

Values can be reset for any device. 

Verifies Delay  
Time (MI) vs. Delay  

Time (Look-up Tables) 

Verification Stage 
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Results obtained 
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A true i2t used as a  tripping control 
device predicts a wrong behavior for 

higher currents.  

Correct behavior for the 
highest currents.  
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Power Distribution 

Architectures Design Tool 

 

Leonardo Laguna Ruiz 
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Introduction 

 Examples of power systems: 

 Mobile devices 

 Computers 

 Airplanes 

 Automobiles 

 

 Critical design factors: 

 Time to market 

 Size 

 Energy efficiency  

 Cost 
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Introduction 

 Main problems when designing a 
power system: 

 Many possible solutions 

 Prototyping is unfeasible 

 

Solution: Simulation 

 
 Problems with simulation 

 Still many possible solutions 

 Complex models are time 

consuming 

Our approach: 
Analyze a LARGE number of solutions with a 
little less accuracy 

After that: 
Analyze the BETTER solutions with more 
detail 

Option 1) or 2) ??? 

Which converters 
in each case ??? 

1) 

2) 
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Design tool description 

 Characteristics of the design tool: 

 Analyze a wide range of 

possibilities (architectures & 

components) 

 Establish a trade-off among  

Efficiency, Cost and Area 

 

 Other valuable characteristics 

 Follows a Top-Down design 

methodology 

 Can interact with other tools 

 Provides a generic optimization 

framework 



www.cei.upm.es 

2011 
43 

Example application 

 Feed 3 loads from a source using 
100 converters from a database: 

 Source → 12 V 

 Load1 → 1.1 V  

 Load2 → 3.3 V 

 Load3 → 5.0 V 

 

 

 

Step 1: Architecture Generator 

Problem definition Converter database 

(Some) Possible architectures 

Converters with Losses, 
area and cost models 

Input: 

? 

Output: 
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Evaluation criteria 

 

 

 Problem specification 

 16 different architectures: 
(3-6 converters each) 

 3 brands, 6 different output power for 

each converter 

 

 

 

 

 Selection criteria 

 Cost ≈ cost of components 

 Area ≈ area of components 

 Efficiency: depending on the loads 

behavior 

 

 

Step 2: Architecture and component 

selection 

Total combinations: 44,113,248 
But we want only the best 8 

% 

Cost 
Area 

Losses 
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Optimization (search) of  best solutions 

▪ How to find the best 8 among 44,113,248 solutions? 

 Evolutionary algorithms 

• Harmony search 

• Genetic algorithms 

• Tabu search 

 

 

 
Using Harmony Search less than 
0.05% of solution space is explored 
to find the optimal solution 

- Objective function of the 8th solution 

- Objective function of the 1th solution 

Searching the best solutions with 
Harmony Search 
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Modeling a Power Delivery 

Network (PDN) 
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Introduction 

The power supply cannot be connected directly to the Vdd and Gnd 
terminals of the IC. It is necessary to use wires, these wires creates 
both a DC drop and time-varying fluctuation of the voltage. The 
voltage fluctuation can cause the following problems: 

 Reduction in voltage across the power supply terminals of the IC 
that slows down the transistor or prevents the transistor from 
switching states. 

 Increase in voltage across the power supply terminals of the IC, 
which creates reliability problems. 

 Timing margin errors caused by degraded waveforms at the output 
of the drivers. 
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PDN elements and the range of  operations 

frequencies 

Nabil, S.M.; El-Rouby, A.B.; Hussin, A.; “A complete solution for the power delivery 
system (PDS) design for high-speed deigital systems”;Design & Technology of 
Integrated Systems in Nanoscal Era, 2009. DTIS '09. 4th International Conference 
on; 2009 , Page(s): 179 - 183 
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VRM 

 Provides the power to the chip. 

 The main influence is in low frequency (below of megahertz range). 

L. D. Smith, R. E. Anderson, D. W. Forehand, T. J. Pelc, and T. Roy, “Power 
distribution system design methodology and capacitor selection for modern 
CMOS technology,” IEEE Transactions on Advanced Packaging, vol. 22, no. 3, pp. 
284-291, Aug. 1999. 
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Decoupling capacitors 

 The capacitors are surface mount devices (SMDs) attached to pads 
on the PCB or package. When SMD capacitors supply charge (or 
current), the current leaves the voltage plane, travels through the 
voltage via, flows through the capacitor, and returns through the 
ground via and then to the ground plane. These contributes to 
increase the ESL. 

 

 

L. D. Smith, R. E. Anderson, D. W. Forehand, T. J. Pelc, and T. Roy, “Power distribution 
system design methodology and capacitor selection for modern CMOS 
technology,” IEEE Transactions on Advanced Packaging, vol. 22, no. 3, pp. 284-291, 
Aug. 1999 
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Modeling the planes  

 Planes play a very important role at high frequencies by acting as 
high-frequency capacitors, serving as conduit for the transportation 
of current, and supporting the return currents of the signal lines 
referenced to it. Planes are large metal structures separated by a 
thin dielectric and are invariably used in all high-frequency packages 
and boards for power delivery and shielding. 

Madhavan Swaminathan; A. Ege Engin, Power Integrity Modeling and 
Design for Semiconductors and Systems, Prentice Hall, 2007. 
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Vias and chip characteristics 

 Each new technology generation results in a rapid increase in circuit 
densities and interconnect resistance, faster device switching 
speeds, and lower operating voltages. These trends lead to 
microprocessor designs with increased current densities and 
transition rates and reduced noise margins. The large currents and 
interconnect resistance cause large, resistiveIR voltage drops, while 
the fast transition rates cause large inductive LdI/dt voltage drops in 
on-chip power distribution networks. 

M. Swaminathan, J. Kim, I. Novak, and J. P. Libous, “Power distribution 
networks for system on package: status and challenges,” IEEE Transactions on 
Advanced Packaging, vol. 27, no. 2, pp. 286-300, May 2004 
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PCB simulated in Q3D Extractor 
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Model in Simplorer 

 The parameters extracted form the PCB are simulated using a signal 
in a trace and showing the efects of this parameters in one point of 
the trace and in an adjacent trace. 
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Results @ 100 MHz 

 The signal has a small delay and a voltage drop. 

 The adjacent trace has a reflected signal. 

Signal 
Signal affected by the parameters 
Signal reflected in other trace 
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Results @ 1GHz 

 The signal is afected by the PCBs parameters.  

  The adjacent trace continues having a reflected signal. 

Signal 
Signal affected by the parameters 
Signal reflected in other trace 
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PCB Buck converter simulated in Q3D Extractor 
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Simplorer simulation 

 The PCB of the typical VRM (Buck converter) is simulated with Q3D 
Extractor and the parameters are simulated in Simplorer. 
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Results  

 The graph shows the output voltage of the VRM before and after the  
PCB parameters. 

 It can be noticed that the voltage after the PCB parameters the 
voltage is lower. 

Voltage before the PCB parameters 
 
 
 
 
 
Voltage after the PCB parameters 
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